Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 2:
\(-\dfrac{17}{16}< -\dfrac{16}{16}=-1\)
\(-1=-\dfrac{3}{3}< -\dfrac{2}{3}\)
Do đó: \(-\dfrac{17}{16}< -\dfrac{2}{3}\)
Bài 3:
a: \(x+\dfrac{3}{16}=-\dfrac{5}{24}\)
=>\(x=-\dfrac{5}{24}-\dfrac{3}{16}=\dfrac{-10}{48}-\dfrac{9}{48}=-\dfrac{19}{48}\)
b: \(\dfrac{1}{20}-\left(x-\dfrac{8}{15}\right)=-\dfrac{1}{30}\)
=>\(x-\dfrac{8}{15}=\dfrac{1}{20}+\dfrac{1}{30}=\dfrac{5}{60}=\dfrac{1}{12}\)
=>\(x=\dfrac{1}{12}+\dfrac{8}{15}=\dfrac{5}{60}+\dfrac{32}{60}=\dfrac{37}{60}\)
Bài 1:
a: \(\left(-\dfrac{28}{19}\right)\cdot\dfrac{-38}{14}=\dfrac{28}{14}\cdot\dfrac{38}{19}=2\cdot2=4\)
b: \(-\left(-\dfrac{21}{16}\right)\cdot\dfrac{-24}{7}=-\dfrac{21}{16}\cdot\dfrac{24}{7}=-\dfrac{21}{7}\cdot\dfrac{24}{16}=-3\cdot\dfrac{3}{2}=-\dfrac{9}{2}\)

a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
=>DB=DE
Xét ΔADF và ΔADC có
AD chung
\(\widehat{DAF}=\widehat{DAC}\)
AF=AC
Do đó: ΔADF=ΔADC
=>DF=DC
Ta có: AB+BF=AF
AE+EC=AC
mà AB=AE và AF=AC
nên BF=EC
Xét ΔDBF và ΔDEC có
DB=DE
BF=EC
DF=DC
Do đó: ΔDBF=ΔDEC
b: Ta có: AB+BF=AF
AE+EC=AC
mà AB=AE và AF=AC
nên BF=EC
c: ΔDBF=ΔDEC
\(\Leftrightarrow\widehat{BDF}=\widehat{EDC}\)
=>\(\widehat{BDF}+\widehat{BDE}=180^0\)
=>F,D,E thẳng hàng
d: Ta có: AF=AC
=>A nằm trên đường trung trực của FC(1)
Ta có: DF=DC
=>D nằm trên đường trung trực của FC(2)
Từ (1),(2) suy ra AD là đường trung trực của FC
=>AD\(\perp\)FC

0,(6).\(x\) = 1
Ta có: vì 0,(6) = \(\dfrac{2}{3}\)
Vậy 0,(6).\(x\) = 1 ⇔ \(\dfrac{2}{3}\)\(x\) = 1
⇒ \(\dfrac{2}{3}\)\(x\) = 1
\(x\) = 1 : \(\dfrac{2}{3}\)
\(x\) = \(\dfrac{3}{2}\)
Vậy \(x=\dfrac{3}{2}\)

1: Ta có: \(\widehat{ABC}+\widehat{ABM}=180^0\)(hai góc kề bù)
\(\widehat{ACB}+\widehat{ACN}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{ABM}=\widehat{ACN}\)
Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
2: ΔABM=ΔACN
=>\(\widehat{BAM}=\widehat{CAN};\widehat{AMB}=\widehat{ANC}\); AM=AN
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{BAH}=\widehat{CAK}\)
Do đó: ΔAHB=ΔAKC
=>AH=AK
3: ΔAHB=ΔAKC
=>\(\widehat{ABH}=\widehat{ACK}\)
Ta có: \(\widehat{ABH}+\widehat{ABC}+\widehat{OBC}=180^0\)
\(\widehat{ACK}+\widehat{ACB}+\widehat{OCB}=180^0\)
mà \(\widehat{ABH}=\widehat{ACK};\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{OBC}=\widehat{OCB}\)
=>ΔOBC cân tại O

\(\dfrac{1}{99}-\dfrac{1}{97.99}-\dfrac{1}{95.97}-\dfrac{1}{93.95}-...-\dfrac{1}{3.5}-\dfrac{1}{1.3}\\ =\dfrac{1}{99}-\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{93.95}+\dfrac{1}{95.97}+\dfrac{1}{97.99}\right)\\ \)
\(=\dfrac{1}{99}-\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{93.95}+\dfrac{2}{95.97}+\dfrac{2}{97.99}\right)\\ =\dfrac{1}{99}-\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{93}-\dfrac{1}{95}+\dfrac{1}{95}-\dfrac{1}{97}+\dfrac{1}{97}-\dfrac{1}{99}\right)\\ \)
\(=\dfrac{1}{99}-\dfrac{1}{2}\left(1-\dfrac{1}{99}\right)\\ =\dfrac{1}{99}-\dfrac{1}{2}+\dfrac{1}{198}=-\dfrac{16}{33}\)

Dữ liệu cuối cùng nhìn khó hiểu thế em? là phân số, số thập phân em ơi?
vì 5/2 = 2,5 nên những số đo chiều cao của tầng hầm phù hợp với dự định của cô Hạnh là: 2,56m;2,59m;2,6m.

a) Do M là trung điểm của BC (gt)
\(\Rightarrow MB=MC\)
Xét \(\Delta AMB\) và \(\Delta DMC\) có:
\(MB=MC\left(cmt\right)\)
\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh)
\(MA=MD\left(gt\right)\)
\(\Rightarrow\Delta AMB=\Delta DMC\left(c-g-c\right)\)
b) Do N là trung điểm của AC (gt)
\(\Rightarrow NA=NC\)
Xét \(\Delta ANB\) và \(\Delta CNE\) có:
\(NA=NC\left(cmt\right)\)
\(\widehat{ANB}=\widehat{CNE}\) (đối đỉnh)
\(NB=NE\left(gt\right)\)
\(\Rightarrow\Delta ANB=\Delta CNE\left(c-g-c\right)\)
\(\Rightarrow\widehat{ABN}=\widehat{CEN}\) (hai góc tương ứng)
Mà \(\widehat{ABN}\) và \(\widehat{CEN}\) là hai góc so le trong
\(\Rightarrow AB\) // \(CE\)
c) Do \(\Delta AMB=\Delta DMC\left(cmt\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{CDM}\) (hai góc tương ứng)
Mà \(\widehat{BAM}\) và \(\widehat{CDM}\) là hai góc so le trong
\(\Rightarrow AB\) // \(CD\)
Mà \(AB\) // \(CE\left(cmt\right)\)
Theo tiên đề Ơclit \(\Rightarrow E,C,D\) thẳng hàng

a: \(A=\left(x^2y\right)\cdot\left(xy^2\right)\cdot\left(-x^3y^2\right)\)
\(=-x^2\cdot x\cdot x^3\cdot y\cdot y^2\cdot y^2\)
\(=-x^6y^5\)
Bậc là 6+5=11
Bài 1:
a: Xét ΔAHB và ΔAHC có
AB=AC
AH chung
HB=HC
Do đó: ΔAHB=ΔAHC
=>\(\widehat{AHB}=\widehat{AHC}\)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
=>AH\(\perp\)BC
b: Xét ΔIBC có
IH là đường cao
IH là đường trung tuyến
Do đó: ΔIBC cân tại I
c: Ta có: MN//BC
=>\(\widehat{INM}=\widehat{ICB};\widehat{IMN}=\widehat{IBC}\)
mà \(\widehat{ICB}=\widehat{IBC}\)(ΔIBC cân tại I)
nên \(\widehat{INM}=\widehat{IMN}\)
=>ΔIMN cân tại I
Ta có: MN//BC
IA\(\perp\)BC
Do đó: IA\(\perp\)MN
ΔIMN cân tại I
mà IA là đường cao
nên A là trung điểm của MN
d: Xét ΔAEI vuông tại E và ΔAFI vuông tại F có
AI chung
\(\widehat{IAE}=\widehat{IAF}\)(ΔAHB=ΔAHC)
Do đó: ΔAEI=ΔAFI
=>IE=IF
Xét ΔBEI vuông tại E và ΔBHI vuông tại H có
BI chung
\(\widehat{EBI}=\widehat{HBI}\)
Do đó: ΔBEI=ΔBHI
=>IE=IH
=>IE=IF=IH
Bài 2:
a: Xét ΔFAD và ΔFCB có
FA=FC
\(\widehat{AFD}=\widehat{CFB}\)
FD=FB
Do đó: ΔFAD=ΔFCB
=>AD=CB
b: ΔFAD=ΔFCB
=>\(\widehat{FAD}=\widehat{FCB}\)
=>AD//BC
Xét ΔEAH và ΔEBC có
EA=EB
\(\widehat{AEH}=\widehat{BEC}\)(hai góc đối đỉnh)
EH=EC
Do đó: ΔEAH=ΔEBC
=>\(\widehat{EAH}=\widehat{EBC}\)
=>AH//BC
Ta có: ΔEAH=ΔEBC
=>AH=BC
mà AD=BC
nên AH=AD
Ta có: AH//BC
AD//BC
mà AH,AD có điểm chung là A
nên H,A,D thẳng hàng
mà AH=AD
nên A là trung điểm của DH
c: Xét ΔFDC và ΔFBA có
FD=FB
\(\widehat{DFC}=\widehat{BFA}\)(hai góc đối đỉnh)
FC=FA
Do đó: ΔFDC=ΔFBA
=>\(\widehat{FDC}=\widehat{FBA}\)
=>DC//BA
d: Gọi giao điểm của CE và BF là K
Xét ΔABC có
BF,CE là các đường trung tuyến
BF cắt CE tại K
Do đó: K là trọng tâm của ΔABC
=>AK đi qua trung điểm M của BC
Ta có: DC//BA
=>CP//AB
Xét tứ giác ACBH có
AH//BC
AH=BC
Do đó: ACBH là hình bình hành
=>BH//AC
=>BP//AC
Xét tứ giác ABPC có
AB//PC
AC//BP
Do đó: ABPC là hình bình hành
=>AP cắt BC tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của AP
=>A,M,P thẳng hàng
=>A,K,P thẳng hàng
=>AP,CH,BD đồng quy