K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2017

chịu em mới lớp 6

CHÚC BẠN HỌC GIỎI

TK MÌNH NHÉ

19 tháng 3 2017

x=-3;y=-2               x=-3;y=2              x=3;y=-2              x=3;y=2

19 tháng 3 2017

1)x=3;y=2         2)x=-3;y=-2

19 tháng 3 2017

Ta có: \(\left|x-2007\right|\ge0\forall x\)\(\Rightarrow2\left|x-2007\right|\ge0\forall x\)

\(\Rightarrow2\left|x-2007\right|+3\ge3\forall x\Rightarrow VT\ge3\forall x\left(1\right)\)

Lại có: \(\left|y-2008\right|\ge0\forall y\)\(\Rightarrow\left|y-2008\right|+2\ge2\forall y\)

\(\Rightarrow\frac{1}{\left|y-2008\right|+2}\le2\forall y\)

\(\Rightarrow\frac{6}{\left|y-2008\right|+2}\le\frac{6}{2}=3\forall y\Rightarrow VP\le3\forall y\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\) ta có: \(VT\ge3\ge VP\) xảy ra khi và chỉ khi 

\(VT=VP=3\)\(\Leftrightarrow\hept{\begin{cases}2\left|x-2007\right|+3=3\\\frac{6}{\left|y-2008\right|+2}=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2\left|x-2007\right|+3=3\\\frac{6}{\left|y-2008\right|+2}=3\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2007\\y=2008\end{cases}}\)

19 tháng 3 2017

Tuy z − y ≠ y − z nhưng (z − y)² = (y − z)²,cho nên 
bạn có thể thay (z − y)² bằng (y − z)² 

P(x,y,z) = (x − y + z)² + (z − y)² + 2(x − y + z)(y − z) 
. . . . . . .= (x − y + z)² + (y − z)² + 2(x − y + z)(y − z) . . . . . .= A² + B² + 2AB 
. . . . . . .= [(x − y + z) + (y − z)]² . . . . . . . . . . . . . . . . . . . . = (A + B)² 
. . . . . . .= (x − y + z + y − z)² 
. . . . . . .= x²

k mk nha mk nhanh nhất

19 tháng 3 2017

Đề thiếu !!! tìm GNNN của biểu thức A nha !

\(A=\left|x-2\right|+3\left|2x-7\right|+\left|x-5\right|=\left(\left|x-2\right|+\left|5-x\right|\right)+3\left|2x-7\right|\)

\(A\ge\left|x-2+5-x\right|+3\left|2x-7\right|=3+3\left|2x-7\right|\ge3\)

Dấu "=" xảy ra <=> \(\left(x-2\right)\left(5-x\right)\ge0\) và \(3\left|2x-7\right|=0\)

\(\Leftrightarrow2\le x\le5\) và \(x=\frac{7}{2}\) (thỏa mãn)

Vậy GTNN của A là 3 tại \(x=\frac{7}{2}\)

19 tháng 3 2017

Áp dụng TC DTSBN ta có :

\(k=\frac{\left(b+c+d\right)+\left(a+c+d\right)+\left(d+a+b\right)+\left(a+b+c\right)}{a+b+c}=\frac{3a+3b+3a+3d}{a+b+c}=\frac{3\left(a+b+c+d\right)}{a+b+c+d}=3\)

Vậy \(k=3\)