K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left|A+B\right|< =\left|A\right|+\left|B\right|\)

=>\(\left(\left|A+B\right|\right)^2< =\left(\left|A\right|+\left|B\right|\right)^2\)

=>\(A^2+B^2+2AB< =A^2+B^2+2\left|AB\right|\)

=>2AB<=2|AB|

=>AB<=|AB|(luôn đúng)

Dấu '=' xảy ra khi AB>=0

\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{10\cdot11}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{10}-\dfrac{1}{11}\)

\(=1-\dfrac{1}{11}=\dfrac{10}{11}\)

12 tháng 8

\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{10\cdot11}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}\\ =1-\dfrac{1}{11}\\ =\dfrac{11}{11}-\dfrac{1}{11}=\dfrac{10}{11}\)

Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}\)

=>\(\dfrac{6}{BC}=sin30=\dfrac{1}{2}\)

=>\(BC=6\cdot2=12\left(cm\right)\)

Ta có: \(\widehat{xOy}+\widehat{yOz}=180^0\)(hai góc kề bù)

=>\(\widehat{yOz}+125^0=180^0\)

=>\(\widehat{yOz}=55^0\)

loading...

NV
12 tháng 8

\(a+\dfrac{2}{b}=b+\dfrac{2}{c}\Rightarrow a-b=\dfrac{2}{c}-\dfrac{2}{b}=2\left(\dfrac{b-c}{bc}\right)\)

\(\Rightarrow\dfrac{a-b}{b-c}=\dfrac{2}{bc}\)

Tương tự: \(a+\dfrac{2}{b}=c+\dfrac{2}{a}\Rightarrow\dfrac{a-c}{b-a}=\dfrac{2}{ab}\)

\(b+\dfrac{2}{c}=c+\dfrac{2}{a}\Rightarrow\dfrac{b-c}{c-a}=\dfrac{2}{ca}\)

Nhân vế với vế:

\(\left(\dfrac{a-b}{b-c}\right)\left(\dfrac{a-c}{b-a}\right)\left(\dfrac{b-c}{c-a}\right)=\dfrac{8}{\left(abc\right)^2}\)

\(\Rightarrow\left(abc\right)^2=8\)

\(\Rightarrow\left|abc\right|=2\sqrt{2}\)

\(\dfrac{2}{3}\times\dfrac{3}{5}+\dfrac{1}{3}:\dfrac{3}{4}\)

\(=\dfrac{2}{5}+\dfrac{1}{3}\times\dfrac{4}{3}\)

\(=\dfrac{2}{5}+\dfrac{4}{9}=\dfrac{18}{45}+\dfrac{20}{45}=\dfrac{38}{45}\)

12 tháng 8

    \(\dfrac{2}{3}\)  x \(\dfrac{3}{5}\) + \(\dfrac{1}{3}\) : \(\dfrac{3}{4}\) 

=   \(\dfrac{2}{5}\) + \(\dfrac{1}{3}\) x \(\dfrac{4}{3}\)

\(\dfrac{2}{5}\) + \(\dfrac{4}{9}\)

\(\dfrac{18}{45}\) + \(\dfrac{20}{45}\)

\(\dfrac{38}{45}\) 

NV
12 tháng 8

Min P em có thể tự tìm đơn giản bằng AM-GM

Min R cũng khá đơn giản:

Đặt \(\left(\sqrt[3]{a};\sqrt[3]{b};\sqrt[3]{c}\right)=\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}0\le x;y;z\le1\\x^3+y^3+z^3=\dfrac{9}{8}\end{matrix}\right.\)

\(R=\dfrac{1}{1+x}+\dfrac{1}{1+y}+\dfrac{1}{1+z}\ge\dfrac{9}{3+x+y+z}\ge\dfrac{9}{3+\sqrt[3]{9\left(x^3+y^3+z^3\right)}}=\dfrac{6}{2+\sqrt[3]{3}}\)

Xét \(Q=x+y+z\)

Do \(\left(x+y+z\right)^3\ge x^3+y^3+z^3=\dfrac{9}{8}\Rightarrow x+y+z\ge\sqrt[3]{\dfrac{9}{8}}>1\Rightarrow Q-1>0\)

\(x^3+y^3+z^3=\left(x+y+z\right)^3-3\left(x+y+z\right)\left(xy+yz+zx\right)+3xyz\)

\(\Rightarrow\dfrac{9}{8}=Q^3-3Q\left(xy+yz+zx\right)+3xyz\)

\(\Rightarrow\dfrac{9}{8}=Q^3-3\left(Q-1\right)\left(xy+yz+zx\right)-3\left(xy+yz+zx-xyz\right)\)

Do \(0\le x;y;z\le1\Rightarrow\left(1-x\right)\left(1-y\right)\left(1-z\right)\ge0\)

\(\Rightarrow xy+yz+zx-xyz\ge Q-1\)  (1)

\(\Rightarrow xy+yz+zx\ge xyz+Q-1\ge Q-1\) (2)

(1);(2)\(\Rightarrow\dfrac{9}{8}\le Q^3-3\left(Q-1\right)\left(Q-1\right)-3\left(Q-1\right)\)

\(\Rightarrow8Q^3-24Q^2+24Q-9\ge0\)

\(\Rightarrow\left(2Q-3\right)\left(4Q^2-6Q+3\right)\ge0\)

Do \(4Q^2-6Q+3=4\left(Q-\dfrac{3}{4}\right)^2+\dfrac{3}{4}>0;\forall Q\)

\(\Rightarrow2Q-3\ge0\Rightarrow Q\ge\dfrac{3}{2}\)

\(Q_{min}=\dfrac{3}{2}\) khi \(\left(x;y;z\right)=\left(0;1;\dfrac{1}{2}\right)\) và hoán vị hay \(\left(a;b;c\right)=\left(0;1;\dfrac{1}{8}\right)\) và hoán vị

12 tháng 8

- Nếu n là số lẻ :

\(2024^n=4^n.506^n=\overline{...6}.\overline{...6}=\overline{...6}\) 

\(\Rightarrow2024^n-1=\overline{.....5}⋮10^{2023}=\overline{...0}\)

- Nếu n là số chẵn :

\(2024^n=4^n.506^n=\overline{...1}.\overline{...6}=\overline{...6}\)

\(\Rightarrow2024^n-1=\overline{.....5}⋮10^{2023}=\overline{...0}\)

Vậy suy ra \(đpcm\)

\(\dfrac{3}{8}+\dfrac{5}{12}+\dfrac{1}{6}\)

\(=\dfrac{9}{24}+\dfrac{10}{24}+\dfrac{4}{24}\)

\(=\dfrac{23}{24}\)