K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5

cô giáo mik bảo chọn B,C,D

TH1: x<=4/3

B=4-3x+3-2x+2-x=-6x+9

x<=4/3 mà x nguyên 

nên \(x\in\left\{...;0;1\right\}\)

B=-6x+9 nên hàm số nghịch biến trên R

=>Khi x tăng thì y giảm

Khi x=0 thì \(B=-6\cdot0+9=9\)

TH2: 4/3<=x<=3/2

\(B=2-x+3-2x+3x-4=1\)

TH3: 3/2<=x<=2

\(B=2-x+3-2x+4-3x=-6x+9\)

B=-6x+9 nên hàm số B=-6x+9 nghịch biến trên R

3/2<=x<=2 mà x nguyên nên x=2

=>\(B=-6\cdot2+9=-12+9=-3\)

TH4: x>=2

\(B=x-2+2x-3+3x-4=6x-9\)

B=6x-9 nên B đồng biến trên R

=>Khi x=2 thì B=6x-9 nhỏ nhất trong khoảng \([2;+\infty)\)

=>B=6*2-9=3

Vậy: \(B_{min}=-3\) khi x=2

a: Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

b: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)

=>\(\widehat{BED}=90^0\)

=>DE\(\perp\)BC

Ta có: ΔBAD=ΔBED

=>DA=DE

mà DE<DC(ΔDEC vuông tại E)

nên DA<DC
c: Sửa đề: AE là phân giác của góc CAH

Ta có: \(\widehat{BAE}+\widehat{CAE}=\widehat{BAC}=90^0\)

\(\widehat{BEA}+\widehat{HAE}=90^0\)(ΔHAE vuông tại H)

mà \(\widehat{BAE}=\widehat{BEA}\)(ΔBAE cân tại B)

nên \(\widehat{CAE}=\widehat{HAE}\)

=>AE là phân giác của góc HAC

16 tháng 5

A) Ta có:
- BE = BA (theo giả thiết)
- AB = BD (do BD là phân giác của tam giác ABC)
- Góc ABD = góc EBD (do cùng chung góc tại B)
Vậy, tam giác ABD cân với tam giác EBD theo định lý cơ bản về tam giác cân.

B) Ta có:
- Tam giác ABD và tam giác CBD cùng chung cạnh BD và cùng chung góc tại D.
- AB = BC (do BD là phân giác của tam giác ABC)
Vậy, theo định lý cơ bản về tam giác cân, ta có AD = CD.

C) Ta có:
- Tam giác ABD và tam giác CBD cùng chung cạnh BD và cùng chung góc tại D.
- AB = BC (do BD là phân giác của tam giác ABC)
Vậy, theo định lý cơ bản về tam giác cân, ta có góc BAD = góc BCD. Do đó, AD là tia phân giác của góc CAD, tức là góc CAH.

NV
15 tháng 5

Do \(\left(3x-1\right)^2\ge0;\forall x\)

\(\left(2y-5\right)^{2018}\ge0;\forall y\)

\(\Rightarrow\left(3x-1\right)^2+\left(2y-5\right)^{2018}\ge0\)

\(\Rightarrow C\ge-2\)

Vậy \(C_{min}=-2\) khi \(\left\{{}\begin{matrix}3x-1=0\\2y-5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{5}{2}\end{matrix}\right.\)

16 tháng 5

                       Giải:

a; Xét tứ giác ABEC có AD = DE (gt); BD = DC (gt)

⇒ tứ  giác ABEC là hình bình hành (tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường thì tứ giác đó là hình bình hành)

⇒ AC = BE 

b; Xét tam giác ABE ta có:

  AB + BE > AE (trong một tam giác tổng hai cạnh luôn lớn hơn cạnh còn lại)

BE = AC (cmt)

⇒ AB + AC > AE 

⇒ \(\dfrac{AB+AC}{2}\) > \(\dfrac{AE}{2}\) 

       AD = DE = \(\dfrac{1}{2}\)AE (vì D là trung điểm AE)

\(\dfrac{AB+AC}{2}\) > AD 

 

 

 

 

 

 

 

 

 

 

16 tháng 5

a: Xét ΔAMB và ΔEMC có

MA=ME

\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔAMB=ΔEMC

b: Xét ΔMBE và ΔMCA có

MB=MC

\(\widehat{BME}=\widehat{CMA}\)(hai góc đối đỉnh)

ME=MA

Do đó: ΔMBE=ΔMCA

=>\(\widehat{MBE}=\widehat{MCA}\)

=>BE//AC

NV
15 tháng 5

Đường xiên nào có hình chiếu nhỏ hơn thì nhỏ hơn.

C đúng

NV
15 tháng 5

\(f\left(2\right)-f\left(-1\right)=6\)

\(\Rightarrow\left[\left(a-1\right).2\right]-\left[\left(a-1\right).\left(-1\right)\right]=6\)

\(\Rightarrow3\left(a-1\right)=6\)

\(\Rightarrow a-1=2\)

\(\Rightarrow a=3\)

ĐKXĐ: x>=-1

\(\dfrac{1}{2}\cdot\sqrt{x+1}-\dfrac{4}{3}=\sqrt{\dfrac{36}{49}}\)

=>\(\dfrac{1}{2}\cdot\sqrt{x+1}-\dfrac{4}{3}=\dfrac{6}{7}\)

=>\(\dfrac{1}{2}\cdot\sqrt{x+1}=\dfrac{4}{3}+\dfrac{6}{7}=\dfrac{28}{21}+\dfrac{18}{21}=\dfrac{46}{21}\)

=>\(\sqrt{x+1}=\dfrac{46}{21}\cdot2=\dfrac{92}{21}\)

=>\(x+1=\dfrac{8464}{441}\)

=>\(x=\dfrac{8023}{441}\)(nhận)