K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2021

Gọi M, N lần lượt là trung điểm các cạnh  AB và CD.

Ta có tam giác ANB cân tại N,

-> MN vuông góc AB.

Tam giác ADB = Tam giác ACB, ta có:

MD=MC -> Tam giác MDC cân tại M.

-> MN vuông góc CD

Do đó ta suy ra MN là đoạn vuông góc chung của cạnh AB và CD.

Ta có khoảng cách từ cạnh AB đến CD là MN:

MN= căn bậc a (AN^2-AM^2)= √2/2

Đáp số: khoảng cách giữa cạnh AB và CD là 2/2

22 tháng 2 2021

Gọi M và N lần lượt là trung điểm của AB và CD. Khi đó:

\(\Delta ACD\)và \(\Delta BCD\)là 2 tam giác đều cạnh 3 nên AN=BN=\(\frac{3\sqrt{3}}{2}\)

Đồng thời \(\Delta ABC=\Delta ABD\)nên CM=DM

Do đó MAB và NCD là 2 tam giác cân tại M và N

Vậy MN _|_ BA và MN _|_ CD

Ta có MN=\(\sqrt{NB^2-MB^2}=\sqrt{\frac{27}{4}-\frac{25}{4}}=\frac{\sqrt{2}}{2}\)

22 tháng 2 2021

Dựng CH _|_ AB => CH _|_ (SAB)

Giả sử MN cắt AD tại F. Theo định lý Talet ta có:

\(\frac{DF}{MC}=\frac{ND}{NC}=\frac{1}{2}\Rightarrow DF=\frac{MC}{2}=\frac{a}{4}\)

Khi đó \(\frac{PA}{PC}=\frac{AF}{MC}=\frac{5}{2}\Rightarrow\frac{CA}{PA}=\frac{7}{5}\)

Do đó: d (P;(SAB))=\(\frac{5}{7}d\left(C;\left(SAB\right)\right)=\frac{5}{7}CH=\frac{5}{7}\cdot\frac{a\sqrt{3}}{2}=\frac{5a\sqrt{3}}{14}\)

8 tháng 5 2021

\(\dfrac{\sqrt{3}a5}{14}\)

22 tháng 2 2021

Ta có \(\frac{d\left(A,\left(SCD\right)\right)}{d\left(M,\left(SCD\right)\right)}=2\Rightarrow d=\left(m,\left(SCD\right)\right)=\frac{1}{2}d\left(A,\left(SCD\right)\right)\)

Dễ thấy AC _|_ CD, SA _|_ CD dựng AH _|_ SA => AH _|_ (SCD)

Vậy d(A,(SCD))=AH

Xét tam giác vuông SAC (A=1v) có \(\frac{1}{AH^2}=\frac{1}{AC^2}+\frac{1}{AS^2}\Rightarrow AH=\frac{a\sqrt{6}}{3}\)

Vậy suy ra \(d\left(M,\left(SCD\right)\right)=\frac{a\sqrt{6}}{3}\)

E=AB∩CD,G=EN∩SB⇒G là trọng tâm tam giác SAE.

d(M,(NCD))=GMGBd(B,(NCD))=12d(B,(NCD))=12.12d(A,(NCD))=14d(A,(NCD))=14h 

Tứ diện AEND vuông tại đỉnh A nên 1h2=1AN2+1AE2+1AD2=116a2⇒h=a6611 

Vậy d(M,(NCD))=a6644. 

8 tháng 5 2021

\(\dfrac{\sqrt{2}}{2}\)a

8 tháng 5 2021

d(h,(scd))=a\(\dfrac{\sqrt{2}}{2}\)

22 tháng 2 2021

+ SA⊥(ABCD)⇒SA⊥BDSA⊥(ABCD)⇒SA⊥BD (1)

+ ABCD là hình vuông ⇒AC⊥BD⇒AC⊥BD (2)

+ Từ (1) và (2) suy ra BD⊥(SAC)⇒BD⊥SCBD⊥(SAC)⇒BD⊥SC

22 tháng 2 2021
Mình không biết.
22 tháng 2 2021

Ta có {BC⊥ABAB⊥SC⇒AB⊥CE{BC⊥ABAB⊥SC⇒AB⊥CE

Khi đó {CE⊥ABCE⊥SA⇒CE⊥(SAB){CE⊥ABCE⊥SA⇒CE⊥(SAB)

Áp dụng hệ thức lượng trong tam giác vuông ta có: SC2=SE.SB⇒SESB=SC2SB2SC2=SE.SB⇒SESB=SC2SB2, tương tự SDSE=SC2SA2SDSE=SC2SA2

Lại cả CA=AC√2=2a;VS.ABC=13SC.SABC=23a3CA=AC2=2a;VS.ABC=13SC.SABC=23a3

Khi đó VS.CDEVS.ABC=SESBSDSA=SC2SB2.SC2SA2=4648=13VS.CDEVS.ABC=SESBSDSA=SC2SB2.SC2SA2=4648=13

Do đó VS.CDE=13.23a3=2a39VS.CDE=13.23a3=2a39.

22 tháng 2 2021
Với OLM.VNHọc mà như chơi, chơi mà vẫn học
22 tháng 2 2021

Hai mặt phẳng (AB′D′)(AB′D′) và (A′C′D)(A′C′D) có giao tuyến là EFEF như hình vẽ.

Hai tam giác ΔA′C′D=ΔD′AB′ΔA′C′D=ΔD′AB′ và EFEF là đường trung bình của hai tam giác nên từ A′A′ và D′D′ ta kẻ 2 đoạn vuông góc lên giao tuyến EFEF sẽ là chung một điểm HH như hình vẽ.

Khi đó, góc giữa hai mặt phẳng cần tìm chính là góc giữa hai đường thẳng A′HA′H và D′HD′H.

Tam giác DEFDEF lần lượt có D′E=D′B′2=√132D′E=D′B′2=132, D′F=D′A2=52D′F=D′A2=52, EF=B′A2=√5EF=B′A2=5.

Theo hê rông ta có: SDEF=√614SDEF=614. Suy ra D′H=2SDEFEF=√30510D′H=2SDEFEF=30510.

Tam giác D′A′HD′A′H có: cosˆA′HD′=HA′2+HD′2−A′D′22HA′.HD′=−2961cos⁡A′HD′^=HA′2+HD′2−A′D′22HA′.HD′=−2961.

Do đó ˆA′HD′≈118,4∘A′HD′^≈118,4∘ hay (ˆA′H,D′H)≈180∘−118,4∘=61,6∘(A′H,D′H^)≈180∘−118,4∘=61,6∘.

12 tháng 5 2021

Gọi N và P lần lượt là trung điểm của SA và AB.

Theo tính chất đường trung bình trong tam giác ta có NP // SB và PC // AM.

Suy ra \alpha = \widehat{NP, PC}.

Ta có NP = \dfrac{SB}2 = \dfrac{\sqrt5}2 và PC = AM = \sqrt 5;\\ NC = \sqrt{NA^2 + AC^2} = \sqrt{\dfrac14 + 8} = \dfrac{\sqrt{33}}2.

\Rightarrow \cos \widehat{NPC} = \dfrac{NP^2+PC^2-NC^2}{2.NP.PC} = \dfrac{\dfrac54 + 5 - \dfrac{33}4}{2.\dfrac{\sqrt5}2.\sqrt5} = -\dfrac25.

Vậy \cos \alpha = \dfrac25.2/5

22 tháng 2 2021

Hai mặt phẳng (AB′D′)(AB′D′) và (A′C′D)(A′C′D) có giao tuyến là EFEF như hình vẽ.

Hai tam giácΔA′C′D=ΔD′AB′ΔA′C′D=ΔD′AB′và EFEF là đường trung bình của hai tam giác nên từ A′A′ và D′D′ ta kẻ 2 đoạn vuông góc lên giao tuyến EFEF sẽ là chung một điểm HH như hình vẽ.

Khi đó, góc giữa hai mặt phẳng cần tìm chính là góc giữa hai đường thẳng A′HA′H và D′HD′H.

Tam giác DEFDEF lần lượt cóD′E=D′B′2=√132D′E=D′B′2=132,D′F=D′A2=52D′F=D′A2=52,EF=B′A2=√5EF=B′A2=5.

Theo hê rông ta có:SDEF=√614SDEF=614. Suy raD′H=2SDEFEF=√30510D′H=2SDEFEF=30510.

Tam giác D′A′HD′A′H có:cosˆA′HD′=HA′2+HD′2−A′D′22HA′.HD′=−2961cos⁡A′HD′^=HA′2+HD′2−A′D′22HA′.HD′=−2961.

Do đóˆA′HD′≈118,4∘A′HD′^≈118,4∘hay(ˆA′H,D′H)≈180∘−118,4∘=61,6∘(A′H,D′H^)≈180∘−118,4∘=61,6∘.

12 tháng 5 2021

 là hình chiếu vuông góc của D' trên (ABCD).

\Rightarrow \Delta ACD là hình chiếu vuông góc của \Delta ACD' trên mặt phẳng (ABCD).

Do đó \cos \alpha = \dfrac{S_{ACD}}{S_{ACD'}} với \alpha là góc cần tìm.

Ta có \left\{ \begin{aligned} & DA^2 + DC^2 = 3\\ & DC^2 + DD'^2 = 4\\ & DA^2 + DD'^2 = 5\\ \end{aligned}\right. \Leftrightarrow \left\{ \begin{aligned} & DA^2 = 2\\ & DC^2 = 1\\ & DD'^2 = 3\\ \end{aligned}\right..

\Rightarrow S_{ACD} = \dfrac12.DA.DC = \dfrac{\sqrt2}2.

Dùng công thức Hê rông ta có S_{ACD'} = \dfrac{\sqrt{11}}2.

Vậy \cos \alpha = \sqrt{\dfrac2{11}}.

22 tháng 2 2021

S A B C D K

gọi K thuộc SC sao cho DK ​​\(\perp\) SC , BK \(\perp\)SC

=> ((SCD),(SBC)) = (DK,KB)

tính được SD = \(\frac{\sqrt{10}}{2}\)a, AC = \(\sqrt{3}\)a, SC= \(\frac{3\sqrt{2}}{2}\)a

\(DC^2=SD^2+SC^2-2SD.SC.cos\widehat{DSC}\)

=> \(\widehat{DSC}\)=....... (số xấu)

\(sin\widehat{DSC}\)\(\frac{DK}{SD}\)=> DK = \(\frac{\sqrt{2}}{2}\)=BK

\(DB^2=DK^2+BK^2-2.DK.BK.cos\alpha\)=> \(\alpha=\frac{\pi}{2}\)

22 tháng 2 2021

quản lí hỏi để thử tài học sinh à

22 tháng 2 2021

\(lim_{x\rightarrow0}\left(\frac{1-\sqrt{12x+1}}{4x}\right)\)

=\(lim_{x\rightarrow0}\frac{1-\sqrt{12x+1}}{4x}\cdot\frac{1+\sqrt{12x+1}}{1+\sqrt{12x+1}}\)

=\(lim_{x\rightarrow0}\left(\frac{\left(1-\sqrt{12x+1}\right)\cdot\left(1+\sqrt{12x+1}\right)}{4x\cdot\left(1+\sqrt{12x+1}\right)}\right)\)

=\(lim_{x\rightarrow0}\left(\frac{1-12x-1}{4x\cdot\left(1+\sqrt{12x+1}\right)}\right)\)

=\(lim_{x\rightarrow0}\left(\frac{-12x}{4x\cdot\left(1+\sqrt{12x+1}\right)}\right)\)

=\(lim_{x\rightarrow0}\left(\frac{-12}{4\cdot\left(1+\sqrt{12x+1}\right)}\right)\)

=\(lim_{x\rightarrow0}\left(\frac{-3}{1+\sqrt{12x+1}}\right)\)

=\(-\frac{3}{1+1}\)

=\(-\frac{3}{2}\)