Từ 3 số a,b,c khác nhau và khác 0.Hãy viết tất cả các số gồm các chữ số đã cho rồi tính nhanh tổng của các số vừa lập được biết a+b+c=15
Các chữ số phải khác nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số số hạng dãy trên là:
(99-3):2+1=49 (số hạng)
Tổng dãy trên là:
(99+3).49:2=2499
Ta có: x+(x+3)+(x+5)+...+(x+99)=2599
=> (x+x+x+...+x)+(3+5+...+99)=2599
50x + 2499=2599
50x = 100
x=2
Bổ sung cho @ Huy Hoàng Vũ
Xét dãy số: 3; 5; 7; ... ; 99
Dãy số này là dãy số cách đều với khoảng cách là:
3 - 5 = 2
Làm tiếp như Huy Hoàng Vũ em nhé.
Câu 12:
Quy luật: Ta thấy các chữ số hàng thứ 2 sẽ tương ứng bằng các số ở hàng thứ nhất cùng cột nhân với 3
Tương tự: Các chữ số ở hàng thứ 3 sẽ bằng các số ở hàng thứ nhất cùng cột nhân với 6 (24 = 4 x 6, 18 = 3 x 6, 6 = 1 x 6)
Vậy số trong dấu ? là: 2 x 6 = 12
Đáp án C.
\(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) + ... + \(\dfrac{2}{x:\left(x+1\right)}\) = \(\dfrac{2011}{2013}\)
\(\dfrac{1}{2}\) \(\times\) (\(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) + ... + \(\dfrac{2}{x}:\left(x+1\right)\) = \(\dfrac{2011}{2013}\) \(\times\) \(\dfrac{1}{2}\)
\(\dfrac{1}{2\times3}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + ... + \(\dfrac{2}{2x\times\left(x+1\right)}\) = \(\dfrac{2011}{2013}\) \(\times\) \(\dfrac{1}{2}\)
\(\dfrac{1}{2\times3}\) + \(\dfrac{1}{3\times4}\) + \(\dfrac{1}{4\times5}\) + ... + \(\dfrac{1}{x\times\left(x+1\right)}\) = \(\dfrac{2011}{2013}\) \(\times\) \(\dfrac{1}{2}\)
\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) + ... + \(\dfrac{1}{x}\) - \(\dfrac{1}{x+1}\) = \(\dfrac{2011}{2013}\) \(\times\) \(\dfrac{1}{2}\)
\(\dfrac{1}{2}\) - \(\dfrac{1}{x+1}\) = \(\dfrac{2011}{2013}\) \(\times\) \(\dfrac{1}{2}\)
\(\dfrac{1}{x+1}\) = \(\dfrac{1}{2}\) - \(\dfrac{2011}{2013\times2}\)
\(\dfrac{1}{x+1}\) = \(\dfrac{2013-2011}{2\times2013}\)
\(\dfrac{1}{x+1}\) = \(\dfrac{2}{2\times2013}\)
\(\dfrac{1}{x+1}\) = \(\dfrac{1}{2013}\)
\(x\) + 1 = 2013
\(x\) = 2013 - 1
\(x\) = 2012
Lời giải:
$\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x(x+1)}=\frac{2011}{2013}$
$\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x(x+1)}=\frac{2011}{2013}$
$\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{x(x+1)}=\frac{2011}{2013}$
$2\left(\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+....+\frac{x+1-x}{x(x+1)}\right)=\frac{2011}{2013}$
$2(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1})=\frac{2011}{2013}$
$2(\frac{1}{2}-\frac{1}{x+1})=\frac{2011}{2013}$
$\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{2013}:2=\frac{2011}{4026}$
$\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4026}=\frac{1}{2013}$
$x+1=2013$
$x=2013-1$
$x=2012$
21, 20 ,18, 15 ,11, 6, 0.
giải thích: khoảng cách giữa 21 và 20 là 1, khoảng cách giữa 20 và 18 là 2, khoảng cách giữa 18 và 15 là 3, khoảng cách giữa 15 và 11 là 4, vậy khoảng cách giữa 11 và số cần điền tiếp là 5 ( ta lấy 11 - 5 ) ,..... vv
a: Vì ABCD là hình thang
nên \(d\left(A;BC\right)=d\left(D;BC\right)=d\left(B;AD\right)=d\left(C;AD\right)\)
\(S_{ABC}=\dfrac{1}{2}\times BC\times d\left(A;BC\right)\)
\(S_{DBC}=\dfrac{1}{2}\times BC\times d\left(D;BC\right)\)
mà \(d\left(A;BC\right)=d\left(D;BC\right)\)
nên \(S_{ABC}=S_{DBC}\)
\(S_{BAD}=\dfrac{1}{2}\times AD\times d\left(B;AD\right)\)
\(S_{CAD}=\dfrac{1}{2}\times AD\times d\left(C;AD\right)\)
mà \(d\left(B;AD\right)=d\left(C;AD\right)\)
nên \(S_{BAD}=S_{CAD}\)
Vì AD//BC
nên \(\dfrac{IA}{IC}=\dfrac{ID}{IB}=\dfrac{AD}{BC}=\dfrac{1}{3}\)
=>IC=3IA;IB=3ID
Vì IC=3IA
nên \(S_{DIC}=3S_{DAI}\)
Vì IB=2ID
nên \(S_{ABI}=3S_{ADI}\)
=>\(S_{ABI}=S_{DIC}\)
b: Vì IC=3IA
nên \(S_{ICB}=3\cdot S_{IAB}=9\cdot S_{AID}\)
Ta có: \(S_{AID}+S_{DIC}+S_{AIB}+S_{BIC}=S_{ABCD}\)
=>\(\left(9+3+3+1\right)\cdot S_{AID}=48\)
=>\(S_{AID}=3\left(cm^2\right)\)
=>\(S_{AIB}=3\cdot3=9\left(cm^2\right)\)
\(3200+\overline{abc}=81\times\overline{abc}\\ 81\times\overline{abc}-\overline{abc}=3200\\ 80\times\overline{abc}=3200\\ \overline{abc}=3200:80\\ \overline{abc}=40\)(Bạn xem lại đề xem có sai đề không nhỉ, \(\overline{abc}\) là số có 3 chữ số mà kết quả lại ra 40)
\(3200+\overline{abc}=81\times\overline{abc}\)
\(3200=81\times\overline{abc}-\overline{abc}\)
\(3200=81\times\overline{abc}-\overline{abc}\times1\)
\(3200=\overline{abc}\times80\)
\(\overline{abc}=3200:80\)
\(\overline{abc}=40\)
\(3200=\overline{abc}\times\left(81-1\right)\)
Dãy số không cách đều thì không có công thức tính số số hạng của dãy số em nhé!
bài này hình như dì t cho làm gòi nhưg ko nhớ:))
Lớp dì m có bao nhiêu hs thi