Chứng minh đẳng thức này giúp tớ với các cậu oi
\(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\cdot\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}+1}\right)=1-a\) ( với đk a ≥ 0 và a ≠ 1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giá tiền hai món mà Hà mua là:
`30000 - 2000 = 28000 ` (đồng)
Giá bành mì là:
`(28000 + 12000) : 2 = 20 000 ` (đồng)
Giá hộp sữa là:
`20000 - 12000 = 8000` (đồng)
Đáp số: ...
Bài 5:
\(a,\dfrac{11}{24}-\dfrac{5}{41}+\dfrac{13}{24}+0,5-\dfrac{36}{41}\\ =\left(\dfrac{11}{24}+\dfrac{13}{24}\right)+\left(\dfrac{-5}{41}-\dfrac{36}{41}\right)+0,5\\ =\dfrac{24}{24}-\dfrac{41}{41}+\dfrac{1}{2}\\ =1-1+\dfrac{1}{2}\\=\dfrac{1}{2}\\ b,16\cdot\dfrac{3}{5}\cdot\dfrac{-1}{3}-13\dfrac{3}{5}\cdot\dfrac{-1}{3}\\ =\dfrac{-1}{3}\cdot\left(16+\dfrac{3}{5}-13-\dfrac{3}{5}\right)\\ =\dfrac{-1}{3}\cdot3\\ =-1\)
Bài 2:
\(\left(\dfrac{-4}{7}\right)^{25}:\left(\dfrac{-4}{7}\right)^{23}\\ =\left(\dfrac{-4}{7}\right)^{25-23}\\ =\left(\dfrac{-4}{7}\right)^2\\ =\dfrac{16}{49}\\ b,\dfrac{15}{60}+\dfrac{12}{19}+\dfrac{2}{9}-\dfrac{10}{8}+\dfrac{-31}{19}\\ =\dfrac{1}{4}+\left(\dfrac{12}{19}-\dfrac{31}{19}\right)+\dfrac{2}{9}-\dfrac{5}{4}\\ =\left(\dfrac{1}{4}-\dfrac{5}{4}\right)+\dfrac{-19}{19}+\dfrac{2}{9}\\ =-1-1+\dfrac{2}{9}\\ =\dfrac{2}{9}-2\\ =-\dfrac{16}{9}\)
Nếu \(a\ne3\Rightarrow\) tập B có phần tử 3 nhưng tập A ko có \(\Rightarrow A\ne B\) (ko thỏa mãn)
\(\Rightarrow a=3\)
Khi đó \(A=\left\{5;1;3\right\}\) ; \(B=\left\{5;3;b\right\}\)
\(\Rightarrow b=1\)
Do n ϵ Z ⇒ A ϵ Z.
\(A=\dfrac{2\left(n-1\right)+5}{n-1}\)
\(A=2+\dfrac{5}{n-1}\)
\(\Rightarrow5⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)\in\left\{1;-1;5;-5\right\}\)
Ta có bảng giá trị:
n - 1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
A | 7 | -3 | 3 | 1 |
⇒ Để A đạt GTNN thì A = -3 → n = 0
GTLN thì A = 7 → n = 2
`160001 dm^2 = 160001 : 10000 = 16,0001 \ dam^2`
`0,133` yến `= 0,133` $\times $ `100 = 13,3 hg`
`2000 \ g = 2000 : 100=20 hg`
`92,6 dag = 92,6 : 10 = 9,26 hg`
Để tính diện tích phần tô màu, chúng ta cần tìm diện tích của hình tam giác EOF và sau đó trừ diện tích hình vuông ABCD.
Vì góc EOF là góc vuông và chúng ta biết độ dài của hai cạnh OE và OF, ta có thể sử dụng định lý Pythagoras để tính độ dài cạnh EF của tam giác EOF. Ta có:
EF² = OE² + OF²
EF² = 8² + 6²
EF² = 64 + 36
EF² = 100
EF = 10
Diện tích của tam giác EOF là:
Diện tích = 0.5 * EF * OF
Diện tích = 0.5 * 10 * 6
Diện tích = 30 cm²
Diện tích phần tô màu sẽ là diện tích hình vuông ABCD (cạnh bằng 6 cm) trừ đi diện tích tam giác EOF:
Diện tích phần tô màu = Diện tích hình vuông - Diện tích tam giác
Diện tích phần tô màu = 6² - 30
Diện tích phần tô màu = 36 - 30
Diện tích phần tô màu = 6 cm²
Vậy diện tích phần tô màu là 6 cm².
Tổng số cây hai khối trồng được nếu khối 5 trồng thêm 100 cây và khối 4 trồng ít đi 10 cây là:
510+100-10=600(cây)
Số cây khối 5 trồng được khi đó là:
600:3x2=400(cây)
Số cây khối 5 trồng được là:
400-100=300(cây)
Số cây khối 4 trồng được là:
510-300=210(cây)
Dãy số lập được là:
`4;9;14;19;...;1544`
Số số hạng có trong dãy số là:
`(1544 - 4) : 5 + 1 = 309` (số hạng)
Tổng của các số hạng trong dãy số là:
`(1544 + 4) . 309 : 2 = 239166`
Vậy ...
\(VT=\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\cdot\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)\\ =\left[1+\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right]\cdot\left[1-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right]\\ =\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)\\ =1-\left(\sqrt{a}\right)^2\\ =1-a=VP\)