Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng d: y = mx + m + 1 (với m là tham số). a) Tìm m để đường thẳng d luôn cắt parabol (P) tại hai điểm phân biệt. b) Gọi x1, x2 lần lượt là hoành độ giao điểm của đường thẳng d và parabol (P). Tìm giá trị của m để x1, x2 thỏa mãn x12(x2 + 1) + x22(x1 + 1) = 5.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Δ}=\left(2m+1\right)^2-4\cdot1\cdot m=4m^2+4m+1-4m=4m^2+1>0\forall m\)
=>Phương trình luôn có hai nghiệm phân biệt
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-\left(2m+1\right)\\x_1x_2=\dfrac{c}{a}=m\end{matrix}\right.\)
\(A=x_1^2+x_2^2-x_1x_2\)
\(=\left(x_1+x_2\right)^2-3x_1x_2\)
\(=\left(2m+1\right)^2-3m=4m^2+4m+1-3m\)
\(=4m^2+m+1\)
\(=\left(2m\right)^2+2\cdot2m\cdot\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{15}{16}\)
\(=\left(2m+\dfrac{1}{4}\right)^2+\dfrac{15}{16}>=\dfrac{15}{16}\forall m\)
Dấu '=' xảy ra khi \(2m+\dfrac{1}{4}=0\)
=>\(m=-\dfrac{1}{8}\)
Gọi thời gian đội 1 (làm một mình) hoàn thành công việc là T1 (giờ).
Gọi thời gian đội 2 (làm một mình) hoàn thành công việc là T2 (giờ).
Ta cần tìm T1 và T2.
Mội giờ đội 1 sẽ hoàn thành được 1/T1 khối lượng công việc.
Mội giờ đội 2 sẽ hoàn thành được 1/T2 khối lượng công việc.
Và cả 2 đội 1 giờ sẽ hoàn thành (1/T1 + 1/T2) khối lượng công việc.
Vậy nếu 2 đội cùng làm thì thời gian để hoàn thành công việc sẽ là:
1/(1/T1 + 1/T2) = 8 Hay 1/T1 + 1/T2 = 1/8. (*)
Nếu đội 1 làm trong 7 giờ thì họ sẽ hoàn thành 7x(1/T1) khối lượng CV.
Đội 2 làm tiếp 4 giờ nữa, thì cả 2 đội sẽ làm được 7x(1/T1) + 4x(1/T2) khối lượng CV, và theo bài ra là 4/5 công việc.
Tức là: 7x(1/T1) + 4x(1/T2) =4/5 (**)
Kết hợp (*) và (**) ta có hệ PT:
1/T1 + 1/T2 = 1/8
7/T1 + 4/T2 = 4/5
Giải hệ PT trên ta được: T1=10 và T2=40 (giờ).
Câu III:
1: ĐKXĐ: y>-3/2
\(\left\{{}\begin{matrix}2\left|x\right|+\dfrac{1}{\sqrt{2y+3}}=11\\-\left|x\right|+\dfrac{3}{\sqrt{2y+3}}=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2\left|x\right|+\dfrac{1}{\sqrt{2y+3}}=11\\-2\left|x\right|+\dfrac{6}{\sqrt{2y+3}}=-4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{7}{\sqrt{2y+3}}=7\\2\left|x\right|+\dfrac{1}{\sqrt{2y+3}}=11\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\sqrt{2y+3}=1\\2\left|x\right|=10\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2y+3=1\\\left|x\right|=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x\in\left\{5;-5\right\}\end{matrix}\right.\left(nhận\right)\)
2: a: Phương trình hoành độ giao điểm là:
\(2x^2=x+m^2+6\)
=>\(2x^2-x-m^2-6=0\)
\(a\cdot c=2\cdot\left(-m^2-6\right)=-2m^2-12< =-12< 0\forall m\)
=>(P) luôn cắt (d) tại hai điểm phân biệt
Câu IV:
2: Ta có: HQ//AC
BE\(\perp\)AC
Do đó: QH\(\perp\)BE tại H
Ta có: HP//AB
CF\(\perp\)AB
Do đó: HP\(\perp\)CF tại H
Xét ΔHQB vuông tại Q và ΔHPC vuông tại P có
\(\widehat{QBH}=\widehat{PCH}\left(=90^0-\widehat{BAE}\right)\)
Do đó: ΔHQB~ΔHPC
Gọi K là giao điểm của AO với (O)
=>AK là đường kính của (O)
Xét (O) có
ΔACK nội tiếp
AK là đường kính
Do đó: ΔACK vuông tại C
Xét (O) có
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
\(\widehat{AKC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{ABC}=\widehat{AKC}\)
Xét ΔADB vuông tại D và ΔACK vuông tại C có
\(\widehat{ABD}=\widehat{AKC}\)
Do đó: ΔADB~ΔACK
=>\(\widehat{BAD}=\widehat{KAC}\)
=>\(\widehat{BAD}=\widehat{OAC}\)
a/
Ta có
\(\widehat{OAC}=\widehat{OGC}=90^o\)
=> A và G cùng nhìn OC dưới hai góc bằng nhau và bằng \(90^o\) => A và C thuộc đường trong đường kính OC => ACGO nội tiếp
Xét tg vuông OGF và tg vuông CAF có chung \(\widehat{AFC}\)
=> tg OGF đồng dạng với tg CAF (g.g.g)
\(\Rightarrow\dfrac{GO}{AC}=\dfrac{FO}{FC}\Rightarrow GO.FC=AC.FO\)
b/
Xét tứ giác nội tiếp ACGO có
\(\widehat{OCG}=\widehat{OAG}\) (góc nt cùng chắn cung GO)
EK//CO (gt) \(\Rightarrow\widehat{OCG}=\widehat{HEG}\) (góc so le trong)
\(\Rightarrow\widehat{OAG}=\widehat{HEG}\)
=> A và E cùng phía với GH; A và E cùng nhìn GH dưới 2 góc bằng nhau => AGHE là tứ giác nội tiếp
\(\widehat{BAE}=\widehat{HGE}\) (góc nt cùng chắn cung HE
Xét (O) có
\(\widehat{BAE}=\widehat{BDE}\) (Góc nt cùng chắn cung BE)
\(\Rightarrow\widehat{HGE}=\widehat{BDE}\) mà 2 góc trên ở vị trí đồng vị =>GH//KD (1)
Ta có
\(OG\perp DE\Rightarrow GD=GE\) (trong đường tròn đường thẳng đi qua tâm và vuông góc với dây cung thì chia đôi dây cung) (2)
Xét tg DEK từ (1) và (2) => HK=HE (trong tam giác đường thẳng // với 1 cạnh và đi qua trung điểm của 1 cạnh thì đi qua trung điểm cạnh còn lại)
a: \(B=\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+5\right)-10\sqrt{x}-5\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
\(=\dfrac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}=\dfrac{x-10\sqrt{x}+25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
\(=\dfrac{\left(\sqrt{x}-5\right)^2}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)
b: \(B=\dfrac{1}{2}\)
=>\(\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=\dfrac{1}{2}\)
=>\(2\sqrt{x}-10=\sqrt{x}+5\)
=>\(\sqrt{x}=15\)
=>x=225(nhận)
a: Phương trình hoành độ giao điểm là:
\(x^2=mx+m+1\)
=>\(x^2-mx-m-1=0\)
\(\text{Δ}=\left(-m\right)^2-4\cdot1\cdot\left(-m-1\right)=m^2+4m+4=\left(m+2\right)^2\)
Để (d) cắt (P) tại hai điểm phân biệt thì Δ>0
=>m+2<>0
=>m<>-2
b: Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=m\\x_1x_2=\dfrac{c}{a}=-m-1\end{matrix}\right.\)
\(x_1^2\left(x_2+1\right)+x_2^2\left(x_1+1\right)=5\)
=>\(x_1^2\cdot x_2+x_2^2\cdot x_1+\left(x_1^2+x_2^2\right)=5\)
=>\(x_1x_2\left(x_1+x_2\right)+\left(x_1+x_2\right)^2-2x_1x_2=5\)
=>\(m\left(-m-1\right)+m^2-2\left(-m-1\right)=5\)
=>\(-m^2-m+m^2+2m+2=5\)
=>m+2=5
=>m=3(nhận)