K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2021

\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\left(đkxđ:x\ge\frac{3}{2}\right)\)

\(< =>\sqrt{2x-3}=2\sqrt{x-1}\)

\(< =>\sqrt{2x-3}-2\sqrt{x-1}=0\)

\(< =>\frac{2x-3-4x+4}{\sqrt{2x-3}+2\sqrt{x-1}}=0\)

\(< =>\frac{1-2x}{\sqrt{2x-3}+2\sqrt{x-1}}=0\)

\(< =>x=\frac{1}{2}\)(ktm)

vậy ...

9 tháng 5 2021

(1) <=> \(\frac{2x-3}{x-1}=4\Leftrightarrow2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\)

(2) \(\Leftrightarrow\sqrt{2x-3}=2\sqrt{x-1}\Leftrightarrow2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\)

đkxđ của (2) : \(x\ge\frac{3}{2}\) => (2) vô nghiệm

11 tháng 5 2021

NqgZiZ2.png

( 1 số phần cơ bản sẽ làm tắt nha, cái đấy bạn sẽ tự trình bày rõ nhá, nhất là chứng minh tứ giác nội tiếp sẽ rút ngắn lại )

a)\(\widehat{ABO}=\widehat{AEO}=90^0\)

\(\Rightarrow ABEO\)nội tiếp

=> A,B,E,O thuộc 1 đường tròn

b) Xét tam giác AMC và tam giác ACN có:

\(\hept{\begin{cases}\widehat{NAC}chung\\\widehat{ACM}=\widehat{ANC}\left(=\frac{1}{2}sđ\widebat{MC}\right)\end{cases}\Rightarrow\Delta AMC~\Delta ACN\left(g-g\right)}\)

\(\Rightarrow\frac{AM}{AC}=\frac{AC}{AN}\)

\(\Rightarrow AC^2=AM.AN\)

c) \(\widehat{MJC}+\widehat{MFC}=180^0\)

\(\Rightarrow MJCF\)nội tiếp

\(\Rightarrow\widehat{MFJ}=\widehat{MCJ}\)

Mà \(\widehat{MCJ}=\widehat{MBC}\left(=\frac{1}{2}sđ\widebat{MC}\right)\)

\(\Rightarrow\widehat{MFJ}=\widehat{MBC}\left(1\right)\)

CMTT \(\widehat{MFI}=\widehat{MCB}\left(2\right)\)

Xét tam giác MBC có: \(\widehat{CMB}+\widehat{MCB}+\widehat{MBC}=180^0\left(3\right)\)

Từ (1), (2) và (3) \(\Rightarrow\widehat{CMB}+\widehat{MFJ}+\widehat{MFI}=180^0\)

\(\Rightarrow\widehat{CMB}+\widehat{PFQ}=180^0\)

\(\Rightarrow MPFQ\)nội tiếp

\(\Rightarrow\widehat{MPQ}=\widehat{MFQ}\)mà \(\widehat{MFQ}=\widehat{MBC}\left(cmt\right)\)

\(\Rightarrow\widehat{MPQ}=\widehat{MBC}\)mà 2 góc này ở vị trí đồng vị

\(\Rightarrow PQ//BC\)

d)  Xét tam giác MIF và tam giác MFJ có:

\(\hept{\begin{cases}\widehat{MIF}=\widehat{MFJ}\left(=\widehat{MBF}\right)\\\widehat{MJF}=\widehat{MFI}\left(=\widehat{MCF}\right)\end{cases}\Rightarrow\Delta MIF~\Delta MFJ\left(g-g\right)}\)

\(\Rightarrow\frac{MI}{MF}=\frac{MF}{MJ}\)

\(\Rightarrow MI.MJ=MF^2\)

MI.MJ lớn nhất \(\Leftrightarrow MF^2\)lớn nhất

Mà \(MF=\frac{1}{2}MN\)

\(\Rightarrow MF^2=\frac{1}{4}MN^2\)

\(\Rightarrow MF\)lớn nhất <=> MN lớn nhất \(\Leftrightarrow MN\)là đường kính (O)

\(\Leftrightarrow M\)là điểm chính giữa cung BC

Vậy MI.MJ lớn nhất <=> M là điểm chính giữa cung BC.

( KO hiểu thì hỏi mình nha )

25 tháng 4 2023

tại sao MF=1/2MN ?

 

10 tháng 5 2021

a. Xét (o) , có: 
\(AB\perp CD=\left\{O\right\}\)

=> \(\widehat{COB}=\widehat{COA=}90^o\)

Mà \(M\in CD\)

=> \(\widehat{MOB}=\widehat{MOA}=90^o\)

Ta có: \(\widehat{ANB}\)là góc nội tiếp chắn nửa đường tròn đường kính AB
=> \(\widehat{ANB}=90^o\)

Xét tứ giác AOMN, có:

\(\widehat{ANB+}\widehat{MOA}=90^o+90^o=180^o\)

\(\widehat{ANB}\)và \(\widehat{MOA}\)là 2 góc đối nhau

=> AOMN là tứ giác nội tiếp (dhnb) (đpcm)

9 tháng 5 2021

\(4x-\sqrt{8}+\frac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\)

\(=4x-\sqrt{8}+\frac{\sqrt{x^2}.\sqrt{x+2}}{\sqrt{x+2}}=4x-\sqrt{8}+|x|\)

có còn rút gọn đc nữa không nhỉ

9 tháng 5 2021

Thanks Nghĩa nha, làm như thế là được rồi^^

9 tháng 5 2021

Bài này đừng làm nha, bài này mình viết sai đề nhé.

9 tháng 5 2021

bạn lớp mấy mà giải toán lớp 9 vậy

9 tháng 5 2021

Untitledday nhe ban

Ta có:\(\frac{1}{\left(k +1\right)\sqrt{k}}=\frac{\left(k+1\right)-k}{\left(k+1\right)\sqrt{k}}=\frac{\left(\sqrt{k+1}+\sqrt{k}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}{\left(k+1\right)\sqrt{k}}\)

\(< \frac{2\sqrt{k+1}\left(\sqrt{k+1}-\sqrt{k}\right)}{\left(k+1\right)\sqrt{k}}=\frac{2\left(\sqrt{k+1}-\sqrt{k}\right)}{\sqrt{k+1}\sqrt{k}}=\frac{2}{\sqrt{k}}-\frac{2}{\sqrt{k+1}}\)

Cho k=1,2,,,,n rồi cộng vế với vế ta có;

\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< \left(\frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}\right)+\left(\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}\right)+...\)

\(+\left(\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\right)=2-\frac{2}{\sqrt{n+1}}< 2\)

              Vậy bất đẳng thức được chứng minh

10 tháng 5 2021

Bớt đăng câu linh tinh đi

Ba an hơn an 23 tuổi mà an sinh năm 2000 thì lấy 2000 -23 cho nhanh còn hỏi lằng nhà lằng nhằng ? 

9 tháng 5 2021

Ta có: \(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\frac{\left|\sqrt{x}-1\right|}{\sqrt{x}+1}\)

9 tháng 5 2021

\(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\left(đk:x>0\right)=\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x+1}\right)^2}}=\frac{|\sqrt{x}-1|}{\sqrt{x}+1}\)

mình nghĩ cách này cũng được :

\(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\left(x>0\right)=\sqrt{\frac{\left(x+1-2\sqrt{x}\right)\left(x+1+2\sqrt{x}\right)}{\left(x+2\sqrt{x}+1\right)^2}}\)

\(=\sqrt{\frac{x^2+2x+1-4x}{\left(x+2\sqrt{x}+1\right)^2}}=\sqrt{\frac{\left(x-1\right)^2}{\left(x+2\sqrt{x}+1\right)^2}}=\frac{|x-1|}{\left(\sqrt{x}+1\right)^2}\)

\(=\frac{|\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)|}{\left(\sqrt{x}+1\right)^2}=\frac{|\sqrt{x}-1|}{\sqrt{x}+1}\)