Tìm các cặp số nguyên x,y thỏa mãn:
a)4x2+4x=y3+y2+y
b)x4+2x2=y3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
PT $\Leftrightarrow 4x^2+4x+1=y^3+y^2+y+1$
$\Leftrightarrow (2x+1)^2=(y^2+1)(y+1)$
Gọi $d=(y^2+1, y+1)$
$\Rightarrow y^2+1\vdots d; y+1\vdots d$
$\Rightarrow y(y+1)-(y^2+1)\vdots d$ hay $y-1\vdots d$
$\Rightarrow (y+1)-(y-1)\vdots d\Rightarrow 2\vdots d$
$\Rightarrow d=1,2$
Nếu $d=2$ thfi $(2x+1)^2\vdots 2$ (vô lý do $2x+1$ lẻ)
$\Rightarrow d=1$
Tức là $(y^2+1, y+1)=1$. Mà tích của chúng là 1 scp nên mỗi số
$y^2+1, y+1$ cũng là scp
Đặt $y^2+1=a^2; y+1=b^2$
$\Rightarrow (b^2-1)^2+1=a^2$
$\Leftrightarrow 1=a^2-(b^2-1)^2=(a-b^2+1)(a+b^2-1)$
$\Rightarrow a-b^2+1=a+b^2+1=1$ hoặc $a-b^2+1=a+b^2+1=-1$
Cả 2 TH đều suy ra $y=0$
$\Rightarrow 4x^2+4x=0\Rightarrow x=0$ hoặc $x=-1$
2.
$x^4+2x^2=y^3$
$\Leftrightarrow (x^2+1)^2=y^3+1=(y+1)(y^2-y+1)$
Đặt $d=(y+1, y^2-y+1)$
$\Rightarrow y+1\vdots d; y^2-y+1\vdots d$
$\Rightarrow (y+1)^2-(y^2-y+1)\vdots d$
$\Rightarrow 3y\vdots d$
Nếu $d\vdots 3$ thì $x^2+1\vdots 3$. Điều này vô lý do 1 scp khi chia 3 dư 0 hoặc 1,
$\Rightarrow x^2+1$ khi chia cho $3$ dư $2$ hoặc $1$ (tức là không chia hết cho 3)
Do đó $d$ và $3$ nguyên tố cùng nhau. Khi đó từ $3y\vdots d$
$\Rightarrow y\vdots d$
Kết hợp với $y+1\vdots d\Rightarrow 1\vdots d\Rightarrow d=1$
$\Rightarrow (y+1, y^2-y+1)=1$. Mà tích của chúng là scp nên mỗi số
$y+1, y^2-y+1$ cũng là scp
Đặt $y+1=a^2; y^2-y+1=b^2$ với $a,b\in\mathbb{N}$
Có:
$y^2-y+1=b^2$
$\Leftrightarrow (2y-1)^2+3=(2b)^2$
$\Leftrightarrow 3=(2b-2y+1)(2b+2y-1)$
Đây là dạng pt tích đơn giản và ta tìm được $y=0$ hoặc $y=1$
Thay vô pt ban đầu thì có cặp $(x,y)=(0,0)$
TL:
Tham khảo ạ:
y3=x3+8x2−6x+8y3=x3+8x2−6x+8
⟹y3−x3=8x2−6x+8⟹y3−x3=8x2−6x+8
⟹(y−x)(y2+x2+xy)=8x2−6x+8⟹(y−x)(y2+x2+xy)=8x2−6x+8
Bây giờ nếu chúng ta có thể xác định 8x2−6x+8 thì chúng ta có thể so sánh LHS với RHS.Am I có đi đúng hướng không?
HT
TL:
Anh vào nick của em thống kê hỏi đáp vì nó không hiện lên ạ
@@@@@@@@@@@@@@@@@@@@@@
Nếu đúng thì anh k nhé
HT
`Answer:`
a. Theo giả thiết: BD là phân giác `\hat{ABC}=>\hat{ABD}=\hat{EBD}`
Xét `\triangleABD` và `\triangleEBD:`
`BD` chung
`\hat{ABD}=\hat{EBD}`
`=>\triangleABD=\triangleEBD(cg-gn)`
`=>BA=BE`
b. Xét `\triangleAIB` và `\triangleEIB:`
`BA=BE`
`BI` chung
`\hat{ABI}=\hat{EBI}`
`=>\triangleAIB=\triangleEIB(c.g.c)`
`=>AI=EI(1)`
`=>\hat{AIB}=\hat{EIB}`
Mà `\hat{AIB}+\hat{EIB}=180^o=>\hat{AIB}=\hat{EIB}=90^o`
`=>BI⊥AE(2)`
Từ `(1)(2)=>BI` là đường trung trực của `AE` hay `BD` là đường trung trực của `AE`
c. `\hat{ABD}=\hat{EBD}(cmt)` mà `\hat{ABD}+\hat{EBD}=\hat{ABC}`
\(\Rightarrow\widehat{ABD}=\widehat{EBD}=\frac{60^o}{2}=30^o\)
\(\Rightarrow\widehat{ADB}=90^o-30^o=60^o\)
Xét `\triangleABD:` `AB` đối diện với `\hat{ADB}`
Xét `\triangleDEC:` `DC` đối diện với `\hat{DEC}`
Mà `\hat{ABD}<\hat{DEC}=>AB<DC`
\(A=\left(1-\dfrac{1}{1.2}\right)+\left(1-\dfrac{1}{2.3}\right)+\left(1-\dfrac{1}{3.4}\right)+...+\left(1-\dfrac{1}{2021.2022}\right)\\ =\left(1-\dfrac{2-1}{1.2}\right)+\left(1-\dfrac{3-2}{2.3}\right)+\left(1-\dfrac{4-3}{3.4}\right)+...+\left(1-\dfrac{2022-2021}{2021.2022}\right)\)
\(=\left(1-1+\dfrac{1}{2}\right)+\left(1-\dfrac{1}{2}+\dfrac{1}{3}\right)+\left(1-\dfrac{1}{3}+\dfrac{1}{4}\right)+...+\left(1-\dfrac{1}{2021}+\dfrac{1}{2022}\right)\)
\(=\left(1-1+1+...+1\right)+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+...+\left(\dfrac{1}{2021}-\dfrac{1}{2021}\right)+\dfrac{1}{2022}\)
\(=2020+\dfrac{1}{2022}\)
Vậy \(A+\dfrac{2021}{2022}=2020+\dfrac{1}{2022}+\dfrac{2021}{2022}=2020+1=2021\)
Bài đã đăng rồi thì bạn không nên đăng lặp lại nữa, tránh gây loãng box toán.