2 Tính chu vi và diện tích của a Hình chữ nhật có chiều dài 3dm, chiều rộng 8cm. b Hình vuông có cạnh là 8cm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


bạn hãy tự viết giả thiết kết luận nhé, có gì không hiểu hỏi lại mình
Giải
a, Áp dụng đinh lí Pitago cho \(\Delta ABC\)vuông góc tại A
\(\Rightarrow\) \(AB^2+AC^2=BC^2\)
\(\Rightarrow3^2+4^2=BC^2\)
\(\Rightarrow BC^2=25\)
\(\Rightarrow BC=5cm\)
b, Xét \(\Delta ACI\)và \(\Delta BDI\)ta có:
IA = IB (gt)
\(\widehat{I_1}=\widehat{I_2}\)(đối đỉnh)
ID = CI (gt)
\(\Rightarrow\Delta ACI=\Delta BDI\left(c.g.c\right)\)
c, Vì \(\Delta ACI=\Delta BDI\)nên ta suy ra
\(\Rightarrow\)DB = AC (hai cạnh tương ứng).
(hình minh họa)

Câu 1: Biểu thức b,c,e là đơn thức
câu 2: Các biểu thức không phải đơn thức là x+y, x+1, 3x^3+y
câu 3:
a) \(a^2ba^33b=\left(a^2a^3\right)\left(bb\right)3=5a^5b^2\)Bậc là 7
b)\(-\frac{1}{2}ab^2c3bc=\left(-\frac{1}{3}.3\right)a\left(b^2b\right)\left(cc\right)=-ab^3c^2\)Bậc là 6
c) \(\frac{2}{3}ab\frac{4}{2}c^2=\left(\frac{2}{3}.\frac{4}{2}\right)abc^2=\frac{4}{3}abc^2\)Bậc là 4
Câu 4:
a) tại x=2, y=3 thì \(2x^3y^3=2.2^3.3^3=2.8.27=432\)
b) tại x=0, y=1 thì \(2x^3y^3=2.0^3.1^3=2\)
c) tại x=1,y=2 thì \(2x^3y^3=2.1^3.2^3=2.8=16\)
câu 5:
ta có:
\(A=1\frac{2}{3}x^5y^2\)
\(B=-3x^3y\frac{1}{5}x^2y=\left(-3.\frac{1}{5}\right)\left(x^3x^2\right)\left(yy\right)=-\frac{3}{5}x^5y^2\)
\(C=\frac{1}{2}\left(xy\right)^2\frac{2}{3}x^3=\left(\frac{1}{2}.\frac{2}{3}\right)x^2y^2x^3=\frac{1}{3}x^5y^2\)
\(\Rightarrow A,B,C\)đồng dạng

\(Q=xyz+\frac{1}{5}xy^2-3xyz+xy^5-xy^2-12=\left(xyz-3xyz\right)+\left(\frac{1}{5}xy^2-xy^2\right)+xy^5-12\)
\(=-2xyz-\frac{4}{5}xy^2+xy^5-12=xy^5-2xyz-\frac{4}{5}xy^2-12\)
vậy bậc của đa thức Q là 6
\(Q=xyz+\frac{1}{5}xy^2-3xyz+xy^5-xy^2-12\)
\(Q=\left(xyz-3xyz\right)+\left(\frac{1}{5}xy^2-xy^2\right)+xy^5-12\)
\(Q=-2xyz+\frac{-4}{5}xy^2+xy^5-12\)
\(\text{Bậc là:6}\)
a) Đổi: \(3dm=30cm\)
Chu vi là:
\(\left(30+8\right)\times2=76\left(cm\right)\)
Diện tích là:
\(30\times8=240\left(cm^2\right)\)
b) Chu vi là:
\(8\times4=32\left(cm\right)\)
Diện tích là:
\(8\times8=64\left(cm^2\right)\)