Bài 10. Cho phương trình x ^ 2 - 3(m + 1) * x - 3m - 4 = 0 (1) m là tham số. Tìm tất cả các giá trị của hai nghiệm phân biệt x,x, thỏa mãn (x1 ^ 2 -3(m+1)x1-4m-4)^ 2(x2^ 2 -3(m+1)x2-4m-4)^ 2 =-3m^ 2 +4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
b: Phương trình hoành độ giao điểm là:
\(\dfrac{1}{2}x^2=2x-2\)
=>\(\dfrac{1}{2}x^2-2x+2=0\)
\(\text{Δ}=\left(-2\right)^2-4\cdot\dfrac{1}{2}\cdot2=4-4=0\)
=>(P) tiếp xúc với (d) tại điểm có hoành độ là: \(x=\dfrac{-\left(-2\right)}{2\cdot\dfrac{1}{2}}=2\)
Khi x=2 thì \(y=2\cdot2-2=2\)
Vậy: (d) giao (P) tại A(2;2)
1: Xét tứ giác BCEF có \(\widehat{BFC}=\widehat{BEC}=90^0\)
nên BCEF là tứ giác nội tiếp
2: Xét (O) có
ΔACK nội tiếp
AK là đường kính
Do đó; ΔACK vuông tại C
Xét (O) có
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
\(\widehat{AKC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{ABC}=\widehat{AKC}\)
Xét ΔADB vuông tại D và ΔACK vuông tại C có
\(\widehat{ABD}=\widehat{AKC}\)
Do đó: ΔADB~ΔACK
=>\(\widehat{DAB}=\widehat{CAK}\)
a: Khi m=2 thì phương trình sẽ trở thành:
\(x^2-\left(4\cdot2-1\right)x+3\cdot2^2-2\cdot2=0\)
=>\(x^2-7x+8=0\)
=>\(x^2-2\cdot x\cdot\dfrac{7}{2}+\dfrac{49}{4}-\dfrac{17}{4}=0\)
=>\(\left(x-\dfrac{7}{2}\right)^2=\dfrac{17}{4}\)
=>\(x-\dfrac{7}{2}=\pm\dfrac{\sqrt{17}}{2}\)
=>\(x=\dfrac{7}{2}\pm\dfrac{\sqrt{17}}{2}\)
b: \(\text{Δ}=\left(4m-1\right)^2-4\left(3m^2-2m\right)\)
\(=16m^2-8m+1-12m^2+8m\)
\(=4m^2+1>=1>0\forall m\)
=>Phương trình luôn có hai nghiệm phân biệt
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=4m-1\\x_1x_2=\dfrac{c}{a}=3m^2-2m\end{matrix}\right.\)
\(\dfrac{1}{x_1}+\dfrac{1}{x_2}-\dfrac{\left(x_1+x_2\right)-2}{x_1x_2}=-2\)
=>\(\dfrac{x_1+x_2}{x_1x_2}-\dfrac{\left(x_1+x_2\right)-2}{x_1x_2}=-2\)
=>\(\dfrac{2}{x_1x_2}-2\)
=>3m^2-2m=-1
=>\(3m^2-2m+1=0\)
\(\text{Δ}=\left(-2\right)^2-4\cdot3\cdot1=4-12=-8< 0\)
=>\(m\in\varnothing\)
a: Xét (O) có
ΔAKB nội tiếp
AB là đường kính
Do đó: ΔAKB vuông tại K
=>AK\(\perp\)MB tại K
Xét tứ giác AIKM có \(\widehat{AIM}=\widehat{AKM}=90^0\)
nên AIKM là tứ giác nội tiếp
b: Ta có: AIKM là tứ giác nội tiếp
=>\(\widehat{MIK}=\widehat{MAK}\)
mà \(\widehat{MAK}=\widehat{KBA}\left(=90^0-\widehat{KAB}\right)\)
nên \(\widehat{MIK}=\widehat{KBA}\)
=>\(\widehat{KBO}+\widehat{KIO}=180^0\)
=>KIOB là tứ giác nội tiếp