K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi vận tốc ban đầu của ô tô là x(km/h)

(Điều kiện: x>0)

Thời gian ô tô đi 180km đầu tiên là: \(\dfrac{180}{x}\left(giờ\right)\)

Độ dài quãng đường còn lại là 400-180=220(km)

Vận tốc của ô tô khi đi trên quãng đường còn lại là:
x+10(km/h)

Thời gian ô tô đi 220km còn lại là \(\dfrac{220}{x+10}\left(giờ\right)\)

Thời gian đi hết quãng đường là 8 giờ nên ta có:

\(\dfrac{180}{x}+\dfrac{220}{x+10}=8\)

=>\(\dfrac{45}{x}+\dfrac{55}{x+10}=2\)

=>\(\dfrac{45x+450+55x}{x\left(x+10\right)}=2\)

=>2x(x+10)=100x+450

=>x(x+10)=50x+225

=>\(x^2-40x-225=0\)

=>(x-45)(x+5)=0

=>\(\left[{}\begin{matrix}x=45\left(nhận\right)\\x=-5\left(loại\right)\end{matrix}\right.\)

Vậy: vận tốc ban đầu của ô tô là 45km/h

15 tháng 8

                   Giải:

Gọi vận tốc ban đầu của ô tô là: \(x\) (km/h) ; \(x\) > 0

Vận tốc lúc sau của ô tô là: \(x+10\) (km/h)

Thời gian ô tô  đi lúc đầu là: 180 : \(x\) (giờ)

Thời gian ô tô đi lúc sau là: (400 -  180) : (\(x+10\))  = \(\dfrac{220}{x+10}\)

Theo bài ra ta có phương trình:

       \(\dfrac{180}{x}\) + \(\dfrac{220}{x+10}\) = 8

        \(\dfrac{45}{x}\) + \(\dfrac{55}{x+10}\) = 2

        45(\(x+10\)) + 55\(x\) = 2.\(x\) (\(x+10\))

       45\(x\) + 450 + 55\(x\) = 2\(x^2\) + 20\(x\)

          2\(x^2\) + 20\(x\) - 55\(x\) - 45\(x\) = 450

           2\(x^2\) + (20\(x\) - 55\(x\) - 45\(x\)) = 450

          2\(x^2\)  + (- 35\(x\) - 45\(x\)) = 450

          2\(x^2\) - 80\(x\) = 450

            \(x^2\) - 40\(x\) = 225

            \(x^2\) - 40\(x\) + 400 = 625

             (\(x-20\))2 = 252

             \(\left[{}\begin{matrix}x-20=25\\x-20=-25\end{matrix}\right.\)

              \(\left[{}\begin{matrix}x=25+20\\x=-25+20\end{matrix}\right.\)

             \(\left[{}\begin{matrix}x=45\\x=-5\end{matrix}\right.\)

\(x=-5\) < 0 (loại)

Vậy \(x=45\)

Kết luận:... 

            

 

 

15 tháng 8

\(a,27x^3-1\\ =\left(3x^3\right)-1^3\\ =\left(3x-1\right)\left(9x^2+3x+1\right)\\ \)

Sửa:

\(b,8x^3+27\\ =\left(2x\right)^3+3^3\\ =\left(2x+3\right)\left(4x^2-6x+9\right)\)

a: \(27x^3-1=\left(3x\right)^3-1^3\)

\(=\left(3x-1\right)\left[\left(3x\right)^2+3x\cdot1+1^2\right]\)

\(=\left(3x-1\right)\left(9x^2+3x+1\right)\)

b: Sửa đề: \(8x^3+27\)

\(8x^3+27=\left(2x\right)^3+3^3\)

\(=\left(2x+3\right)\left[\left(2x\right)^2-2x\cdot3+3^2\right]\)

\(=\left(2x+3\right)\left(4x^2-6x+9\right)\)

15 tháng 8

   (\(x^2\) -  4\(xy\) + 4y2) - 25

= (\(x\) - 2y)2 - 25

= (\(x-2y\) - 5)(\(x-2y\) + 5)

Gọi vận tốc ban đầu là x(km/h)

(Điều kiện: x>0)

Thời gian dự kiến sẽ đi hết quãng đường là: \(\dfrac{50}{x}\left(giờ\right)\)

Độ dài quãng đường đi được trong 2 giờ đầu là 2x(km)

Độ dài quãng đường còn lại là 50-2x(km)

Thời gian đi hết quãng đường còn lại là: \(\dfrac{50-2x}{x+2}\left(giờ\right)\)

Vì người đó đến B đúng dự định nên ta có:

\(2+0,5+\dfrac{50-2x}{x+2}=\dfrac{50}{x}\)

=>\(\dfrac{50}{x}-\dfrac{50-2x}{x+2}=\dfrac{5}{2}\)

=>\(\dfrac{50\left(x+2\right)-x\left(50-2x\right)}{x\left(x+2\right)}=\dfrac{5}{2}\)

=>\(\dfrac{50x+100-50x+2x^2}{x\left(x+2\right)}=\dfrac{5}{2}\)

=>\(\dfrac{2x^2+100}{x^2+2x}=\dfrac{5}{2}\)

=>\(5\left(x^2+2x\right)=2\left(2x^2+100\right)\)

=>\(5x^2+10x-4x^2-200=0\)

=>\(x^2+10x-200=0\)

=>(x+20)(x-10)=0

=>\(\left[{}\begin{matrix}x=-20\left(loại\right)\\x=10\left(nhận\right)\end{matrix}\right.\)

Vậy: Vận tốc ban đầu là 10km/h

\(x^5-2x^4+x^3\)

\(=x^3\cdot x^2-x^3\cdot2x+x^3\cdot1\)

\(=x^3\left(x^2-2x+1\right)=x^3\left(x-1\right)^2\)

\(2x^5-50x^3=0\)

=>\(2x^3\left(x^2-25\right)=0\)

=>\(x^3\left(x-5\right)\left(x+5\right)=0\)

=>\(\left[{}\begin{matrix}x^3=0\\x-5=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)

15 tháng 8

Bổ sung kết luận:

Vậy \(x\) \(\in\) {-5; 0; 5}

 

Gọi vận tốc xe máy là x(km/h)

(Điều kiện: x>28)

Vận tốc của người đi xe đạp là x-28(km/h)

Tổng vận tốc của hai xe là 156:3=52(km/h)

=>x+x-28=52

=>2x=80

=>x=40(nhận)

Vậy: Vận tốc xe máy là 40km/h

Vận tốc của người đi xe đạp là 40-28=12km/h

ΔAED vuông tại A

=>\(AE^2+AD^2=ED^2\)

ΔAEB vuông tại A

=>\(AE^2+AB^2=EB^2\)

ΔACD vuông tại A

=>\(AC^2+AD^2=CD^2\)

ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

\(CD^2-CB^2=CA^2+AD^2-CA^2-AB^2=AD^2-AB^2\)

\(ED^2-EB^2=AE^2+AD^2-AE^2-AB^2=AD^2-AB^2\)

Do đó: \(CD^2-CB^2=ED^2-EB^2\)

\(x^4+8x=0\)

=>\(x\left(x^3+8\right)=0\)

=>\(\left[{}\begin{matrix}x=0\\x^3+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

15 tháng 8

\(x^4\) + 8\(x\) = 0

\(x^{ }\)(\(x^3\) + 8) = 0

\(\left[{}\begin{matrix}x=0\\x^3+8=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=0\\x^3=-8\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Vậy \(x\) \(\in\) {-2; 0}