Tứ giác ABCD có AD vuông góc với BC . Biết AD=5CM , AB=2CM , BC=10CM . Tính độ dài CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc ban đầu của ô tô là x(km/h)
(Điều kiện: x>0)
Thời gian ô tô đi 180km đầu tiên là: \(\dfrac{180}{x}\left(giờ\right)\)
Độ dài quãng đường còn lại là 400-180=220(km)
Vận tốc của ô tô khi đi trên quãng đường còn lại là:
x+10(km/h)
Thời gian ô tô đi 220km còn lại là \(\dfrac{220}{x+10}\left(giờ\right)\)
Thời gian đi hết quãng đường là 8 giờ nên ta có:
\(\dfrac{180}{x}+\dfrac{220}{x+10}=8\)
=>\(\dfrac{45}{x}+\dfrac{55}{x+10}=2\)
=>\(\dfrac{45x+450+55x}{x\left(x+10\right)}=2\)
=>2x(x+10)=100x+450
=>x(x+10)=50x+225
=>\(x^2-40x-225=0\)
=>(x-45)(x+5)=0
=>\(\left[{}\begin{matrix}x=45\left(nhận\right)\\x=-5\left(loại\right)\end{matrix}\right.\)
Vậy: vận tốc ban đầu của ô tô là 45km/h
Giải:
Gọi vận tốc ban đầu của ô tô là: \(x\) (km/h) ; \(x\) > 0
Vận tốc lúc sau của ô tô là: \(x+10\) (km/h)
Thời gian ô tô đi lúc đầu là: 180 : \(x\) (giờ)
Thời gian ô tô đi lúc sau là: (400 - 180) : (\(x+10\)) = \(\dfrac{220}{x+10}\)
Theo bài ra ta có phương trình:
\(\dfrac{180}{x}\) + \(\dfrac{220}{x+10}\) = 8
\(\dfrac{45}{x}\) + \(\dfrac{55}{x+10}\) = 2
45(\(x+10\)) + 55\(x\) = 2.\(x\) (\(x+10\))
45\(x\) + 450 + 55\(x\) = 2\(x^2\) + 20\(x\)
2\(x^2\) + 20\(x\) - 55\(x\) - 45\(x\) = 450
2\(x^2\) + (20\(x\) - 55\(x\) - 45\(x\)) = 450
2\(x^2\) + (- 35\(x\) - 45\(x\)) = 450
2\(x^2\) - 80\(x\) = 450
\(x^2\) - 40\(x\) = 225
\(x^2\) - 40\(x\) + 400 = 625
(\(x-20\))2 = 252
\(\left[{}\begin{matrix}x-20=25\\x-20=-25\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=25+20\\x=-25+20\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=45\\x=-5\end{matrix}\right.\)
\(x=-5\) < 0 (loại)
Vậy \(x=45\)
Kết luận:...
\(a,27x^3-1\\ =\left(3x^3\right)-1^3\\ =\left(3x-1\right)\left(9x^2+3x+1\right)\\ \)
Sửa:
\(b,8x^3+27\\ =\left(2x\right)^3+3^3\\ =\left(2x+3\right)\left(4x^2-6x+9\right)\)
a: \(27x^3-1=\left(3x\right)^3-1^3\)
\(=\left(3x-1\right)\left[\left(3x\right)^2+3x\cdot1+1^2\right]\)
\(=\left(3x-1\right)\left(9x^2+3x+1\right)\)
b: Sửa đề: \(8x^3+27\)
\(8x^3+27=\left(2x\right)^3+3^3\)
\(=\left(2x+3\right)\left[\left(2x\right)^2-2x\cdot3+3^2\right]\)
\(=\left(2x+3\right)\left(4x^2-6x+9\right)\)
(\(x^2\) - 4\(xy\) + 4y2) - 25
= (\(x\) - 2y)2 - 25
= (\(x-2y\) - 5)(\(x-2y\) + 5)
Gọi vận tốc ban đầu là x(km/h)
(Điều kiện: x>0)
Thời gian dự kiến sẽ đi hết quãng đường là: \(\dfrac{50}{x}\left(giờ\right)\)
Độ dài quãng đường đi được trong 2 giờ đầu là 2x(km)
Độ dài quãng đường còn lại là 50-2x(km)
Thời gian đi hết quãng đường còn lại là: \(\dfrac{50-2x}{x+2}\left(giờ\right)\)
Vì người đó đến B đúng dự định nên ta có:
\(2+0,5+\dfrac{50-2x}{x+2}=\dfrac{50}{x}\)
=>\(\dfrac{50}{x}-\dfrac{50-2x}{x+2}=\dfrac{5}{2}\)
=>\(\dfrac{50\left(x+2\right)-x\left(50-2x\right)}{x\left(x+2\right)}=\dfrac{5}{2}\)
=>\(\dfrac{50x+100-50x+2x^2}{x\left(x+2\right)}=\dfrac{5}{2}\)
=>\(\dfrac{2x^2+100}{x^2+2x}=\dfrac{5}{2}\)
=>\(5\left(x^2+2x\right)=2\left(2x^2+100\right)\)
=>\(5x^2+10x-4x^2-200=0\)
=>\(x^2+10x-200=0\)
=>(x+20)(x-10)=0
=>\(\left[{}\begin{matrix}x=-20\left(loại\right)\\x=10\left(nhận\right)\end{matrix}\right.\)
Vậy: Vận tốc ban đầu là 10km/h
\(x^5-2x^4+x^3\)
\(=x^3\cdot x^2-x^3\cdot2x+x^3\cdot1\)
\(=x^3\left(x^2-2x+1\right)=x^3\left(x-1\right)^2\)
\(2x^5-50x^3=0\)
=>\(2x^3\left(x^2-25\right)=0\)
=>\(x^3\left(x-5\right)\left(x+5\right)=0\)
=>\(\left[{}\begin{matrix}x^3=0\\x-5=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
Bổ sung kết luận:
Vậy \(x\) \(\in\) {-5; 0; 5}
Gọi vận tốc xe máy là x(km/h)
(Điều kiện: x>28)
Vận tốc của người đi xe đạp là x-28(km/h)
Tổng vận tốc của hai xe là 156:3=52(km/h)
=>x+x-28=52
=>2x=80
=>x=40(nhận)
Vậy: Vận tốc xe máy là 40km/h
Vận tốc của người đi xe đạp là 40-28=12km/h
ΔAED vuông tại A
=>\(AE^2+AD^2=ED^2\)
ΔAEB vuông tại A
=>\(AE^2+AB^2=EB^2\)
ΔACD vuông tại A
=>\(AC^2+AD^2=CD^2\)
ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
\(CD^2-CB^2=CA^2+AD^2-CA^2-AB^2=AD^2-AB^2\)
\(ED^2-EB^2=AE^2+AD^2-AE^2-AB^2=AD^2-AB^2\)
Do đó: \(CD^2-CB^2=ED^2-EB^2\)
\(x^4+8x=0\)
=>\(x\left(x^3+8\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\x^3+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
\(x^4\) + 8\(x\) = 0
\(x^{ }\)(\(x^3\) + 8) = 0
\(\left[{}\begin{matrix}x=0\\x^3+8=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x^3=-8\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy \(x\) \(\in\) {-2; 0}