1.Tìm x : 4 x+2 . 3x=16 . 125
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(1-\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{n+1}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{n}{n+1}\)
\(=\dfrac{1}{n+1}\)
8. Ta có:
\(x=\dfrac{2a-1}{a}=\dfrac{2a}{a}-\dfrac{1}{a}=2-\dfrac{1}{a}\)
Vì 2 ∈ Z nên x thuộc Z khi \(\dfrac{1}{a}\) thuộc Z
⇒ 1 ⋮ a ⇒ a ∈ Ư(1) = {1; -1}
Vậy: ...
`#3107.101107`
`99^{20}` và `9999^{10}`
Ta có:
\(99^{20}=99^{10}\cdot99^{10}\)
\(9999^{10}=99^{10}\cdot101^{10}\)
Vì \(99^{10}< 101^{10}\Rightarrow99^{10}\cdot99^{10}< 99^{10}\cdot101^{10}\)
\(\Rightarrow99^{20}< 9999^{10}.\)
a: \(\dfrac{63^2-47^2}{215^2-105^2}=\dfrac{\left(63-47\right)\cdot\left(63+47\right)}{\left(215-105\right)\left(215+105\right)}\)
\(=\dfrac{16\cdot110}{110\cdot320}=\dfrac{16}{320}=\dfrac{1}{20}\)
b: \(\dfrac{437^2-363^2}{537^2-463^2}=\dfrac{\left(437-363\right)\left(437+363\right)}{\left(537-463\right)\left(537+463\right)}\)
\(=\dfrac{74\cdot800}{74\cdot1000}=\dfrac{800}{1000}=\dfrac{4}{5}\)
Bài 1: ĐKXĐ: \(x\ne-1\)
Để \(\dfrac{x+5}{2x+2}\) là số nguyên thì \(x+5⋮2x+2\)
=>\(2x+10⋮2x+2\)
=>\(2x+2+8⋮2x+2\)
=>\(8⋮2x+2\)
=>\(2x+2\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
=>\(x\in\left\{-\dfrac{1}{2};-\dfrac{3}{2};0;-2;1;-3;3;-5\right\}\)
mà x nguyên
nên \(x\in\left\{0;-2;1;-3;3;-5\right\}\)
Bài 3:
Số đối của \(-\dfrac{4}{5}\) là \(\dfrac{4}{5}\)
Số đối của \(1\dfrac{1}{3}=\dfrac{4}{3}\) là \(-\dfrac{4}{3}\)
Biểu diễn:
\(\dfrac{1}{20\times19}\) - \(\dfrac{1}{19\times18}\) - \(\dfrac{1}{18\times17}\) - ... - \(\dfrac{1}{3\times2}\) - \(\dfrac{1}{2\times1}\)
= \(\dfrac{1}{20\times19}\) - (\(\dfrac{1}{19\times18}\) + \(\dfrac{1}{18\times17}\) + ... + \(\dfrac{1}{3\times2}\) + \(\dfrac{1}{2\times1}\))
= \(\dfrac{1}{20\times19}\) - (\(\dfrac{1}{1\times2}\) + \(\dfrac{1}{2\times3}\) + ... + \(\dfrac{1}{17\times18}\) + \(\dfrac{1}{18\times19}\))
= \(\dfrac{1}{380}\) - (\(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{17}\) - \(\dfrac{1}{18}\) + \(\dfrac{1}{18}\) - \(\dfrac{1}{19}\))
= \(\dfrac{1}{380}\) - (\(\dfrac{1}{1}\) - \(\dfrac{1}{19}\))
= \(\dfrac{1}{380}\)- \(\dfrac{18}{19}\)
= - \(\dfrac{359}{380}\)
\(\dfrac{1}{20\cdot19}-\dfrac{1}{19\cdot18}-\dfrac{1}{18\cdot17}-...-\dfrac{1}{3\cdot2}-\dfrac{1}{2\cdot1}\)
\(=\left(\dfrac{1}{19}-\dfrac{1}{20}\right)-\left(\dfrac{1}{18}-\dfrac{1}{19}\right)-\left(\dfrac{1}{17}-\dfrac{1}{18}\right)-...-\left(\dfrac{1}{2}-\dfrac{1}{3}\right)-\left(1-\dfrac{1}{2}\right)\)
\(=\dfrac{1}{19}-\dfrac{1}{20}-\dfrac{1}{18}+\dfrac{1}{19}-\dfrac{1}{17}+\dfrac{1}{18}-...-\dfrac{1}{2}+\dfrac{1}{3}-1+\dfrac{1}{2}\)
\(=-\dfrac{1}{20}+\left(\dfrac{1}{19}+\dfrac{1}{19}\right)+\left(-\dfrac{1}{18}+\dfrac{1}{18}\right)+\left(-\dfrac{1}{17}+\dfrac{1}{17}\right)+...+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)-1\)
\(=-\dfrac{1}{20}+\dfrac{2}{19}-1\)
\(=-\dfrac{359}{380}\)
\(\dfrac{3}{5}=\dfrac{2x}{10}\Leftrightarrow\dfrac{3}{5}=\dfrac{x}{5}\Rightarrow x=3\)
\(\dfrac{3x}{10}=\dfrac{9}{15}\Leftrightarrow\dfrac{3x}{10}=\dfrac{3}{5}\Rightarrow15x=30\Leftrightarrow x=2\)
\(\dfrac{3x}{20}=-\dfrac{3}{4}\Leftrightarrow\dfrac{3x}{20}=-\dfrac{15}{20}\Rightarrow3x=-15\Leftrightarrow x=-5\)
\(\dfrac{2x}{49}=-\dfrac{2}{7}\Leftrightarrow\dfrac{2x}{49}=-\dfrac{14}{49}\Rightarrow2x=-14\Leftrightarrow x=-7\)
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: Xét ΔNGA và ΔNKC có
NG=NK
\(\widehat{GNA}=\widehat{KNC}\)(hai góc đối đỉnh)
NA=NC
Do đó: ΔNGA=ΔNKC
=>\(\widehat{NGA}=\widehat{NKC}\)
=>GA//KC
c:
ΔAHB=ΔAHC
=>HB=HC
=>H là trung điểm của BC
Xét ΔABC có
AH,BN là các đường trung tuyến
AH cắt BN tại G
Do đó: G là trọng tâm của ΔABC
=>BG=2GN
mà GK=2GN
nên BG=GK
=>G là trung điểm của BK
d: Xét ΔABC có
G là trọng tâm
M là trung điểm của AB
Do đó: C,G,M thẳng hàng; CG=2GM
Xét ΔABC có
G là trọng tâm
AH là đường trung tuyến
Do đó: AG=2GH
Xét ΔGBC có
GH là đường cao
GH là đường trung tuyến
Do đó: ΔGBC cân tại G
=>GB=GC
BC+AG=2(BH+HG)>2BG
mà BG=CG
nên BC+AG>2CG
=>\(BC+AG>2\cdot2\cdot MG=4MG\)
\(4^{x+2}.3^x=16.12^5\\ \Rightarrow4^{x+2}.3^x=4^2.4^5.3^5\\ \Rightarrow4^{x+2}.3^x=4^7.3^5\\ \Rightarrow\dfrac{4^{x+2}}{4^7}.\dfrac{3^x}{3^5}=1\\ \Rightarrow4^{x-5}.3^{x-5}=1\\ \Rightarrow12^{x-5}=1\\ \Rightarrow x-5=0\\ \Rightarrow x=5\)
\(4^{x+2}\cdot3^x=16\cdot12^5\)
\(\Rightarrow4^{x+2}\cdot3^x=4^2\cdot4^5\cdot3^5\)
\(\Rightarrow4^{x+2}\cdot3^x=4^7\cdot3^5\)
\(\Rightarrow\left\{{}\begin{matrix}4^{x+2}=4^7\\3^x=3^5\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+2=7\\x=5\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=5\\x=5\end{matrix}\right.\)
\(\Rightarrow x=5\)
Vậy: ...