K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2017

Từ B hạ BF vuông góc với CD tại F

Xét tam giác BFC (góc F=90 dộ): FC=\(FC=\sqrt{BC^2-BF^2}=\sqrt{16.9^2-15.6^2}=6.5\)

Vậy DC=AB+FC=5+6.5=11.5

xét tam giác ECD có AB II CD:

Talet: \(\frac{EA}{ED}=\frac{AB}{CD}\Leftrightarrow\frac{EA}{ED-EA}=\frac{AB}{CD-AD}\Leftrightarrow\frac{EA}{AD}=\frac{AB}{FC}\)

\(\Leftrightarrow EA=\frac{AD.AB}{FC}=\frac{15,6.5}{6,5}=12\)

Vậy diện tích EDC là: \(S=\frac{ED.DC}{2}=\frac{\left(15.6+12\right)11.5}{2}=158.7\)

12 tháng 2 2017

dễ mà, chu vi DEF = DE+EF+DF=3/2(AB+BC+AC)=3/2 * 30 = 45

13 tháng 2 2017

thanks

13 tháng 2 2017

A B C M E G F

GE // AM

\(\Rightarrow\frac{GE}{AM}=\frac{BE}{BM}\) ( Định lý Ta-lét )

Tương tự \(\frac{FE}{AM}=\frac{CE}{CM}=\frac{CE}{BM}\) ( Vì CM = CM )

Cộng các vế hai đẳng thức trên ta có : \(\frac{GE}{AM}+\frac{FE}{AM}=\frac{BE}{BM}+\frac{CE}{BM}\)

\(\Rightarrow\frac{FE+EG}{AM}=\frac{BC}{BM}=2\)

\(\Rightarrow FE+EG=2AM\)

Vậy ...

12 tháng 2 2017

pt <=> \(\left(x^2-2x.\frac{y}{2}+\frac{y^2}{4}\right)+\frac{3}{4}.\left(y^2-4y+4\right)+\left(z^2-2z+1\right)=0\)

\(\Leftrightarrow\left(x-\frac{y}{2}\right)^2+\frac{3}{4}.\left(y-2\right)^2+\left(z-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-\frac{y}{2}=0\\y-2=0\\z-1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=1\end{cases}}\)

12 tháng 2 2017

\(\hept{\begin{cases}x=\frac{18}{5}\\y=\frac{7}{20}\end{cases}}\)