Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét delta phẩy có
1+1-m = 2-m vậy điều kiện để phương trình có 2 nghiệm x1;x2 là m ≤2
theo Vi-ét ta có:
\(\left\{{}\begin{matrix}x1+x2=2\\x1x2=m-1\end{matrix}\right.\)
theo bài ra ta có:
2x1 + x2 = 5
x1 + 2 = 5 => x1 = 3 => x2 = -1
ta có x1x2 = m - 1 => m - 1 = -3
=> m = -2 vậy m = -2 để phương trình có 2 nghiệm x1;x2 thỏa mãn 2x1 + x2 = 5.
Pt có 2 nghiệm khi: \(\Delta=25-8\left(m+1\right)\ge0\Rightarrow m\le\dfrac{17}{8}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{5}{2}\\x_1x_2=\dfrac{m+1}{2}\end{matrix}\right.\)
Kết hợp Viet và điều kiện đề bài: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{5}{2}\\2x_1+3x_2=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{7}{2}\\x_1=-1\end{matrix}\right.\)
Thế vào \(x_1x_2=\dfrac{m+1}{2}\Rightarrow\dfrac{m+1}{2}=-\dfrac{7}{2}\)
\(\Rightarrow m=-8\)
x^2-3x-(m-1)=0(1)
a)Dể phương trình có 2 nghiệm dương phân biệt:delta>0,S>0,P>0
9+4m-4>0>>>m>-5/4;S=3>0;P=m-1>0>>m>1.
>>>>Để(1) có 2 nghiệm phân biệt thì m>1.
b)x1^3+x2^3=18>>>(x1+x2)(x1^2-x1x2+x2^2)=18>>>x1^2-x1x2+x2^2=6
>>>(x1+x2)^2-3x1x2=6>>>3x1x2=3>>>x1x2=1
-(m-1)=1>>>m=0.
Vậy m=0
1.Ta có \(\Delta=4m^2-4\left(m^2-m-3\right)=4m+12\)
Để phương trình có 2 nghiệm phân biệt \(\Rightarrow\Delta>0\Rightarrow4m+12>0\Rightarrow m>-3\)
Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m-3\end{cases}}\)
a. Phương trình có 2 nghiệm trái dấu \(\Rightarrow x_1.x_2< 0\Rightarrow m^2-m-3< 0\Rightarrow\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)
Vậy \(\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)
b. Phương trình có 2 nghiệm phân biệt dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2m>0\\x_1.x_2=m^2-m-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}m>0\\m< \frac{1-\sqrt{13}}{2}\end{cases}\left(l\right);\hept{\begin{cases}m>0\\m>\frac{1+\sqrt{13}}{2}\end{cases}\Leftrightarrow m>\frac{1+\sqrt{13}}{2}}}}\)
Vậy \(m>\frac{1+\sqrt{13}}{2}\)
2. a.Ta có \(\Delta=\left(2m-1\right)^2+4m=4m^2-4m+1+4m=4m^2+1\)
Ta thấy \(\Delta=4m^2+1>0\forall m\)
Vậy phương trình luôn có 2 nghiejm phân biệt với mọi m
b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1.x_2=-m\end{cases}}\)
Để \(x_1-x_2=1\Leftrightarrow\left(x_1-x_2\right)^2=1\Leftrightarrow\left(x_1+x2\right)^2-4x_1x_2=1\)
\(\Leftrightarrow\left(1-2m\right)^2-4.\left(-m\right)=1\Leftrightarrow4m^2-4m+1+4m=1\)
\(\Leftrightarrow m^2=0\Leftrightarrow m=0\)
Vậy \(m=0\)thoă mãn yêu cầu bài toán
Δ=(-2)^2-4(m-3)
=4-4m+12=16-4m
Để phương trình có hai nghiệm dương phân biệt thì 16-4m>0 và m-3>0
=>m>3 và m<4
x1^2+x2^2=(x1+x2)^2-2x1x2
=2^2-2(m-3)=4-2m+6=10-2m
=>x1^2=10-2m-x2^2
x1^2+12=2x2-x1x2
=>10-2m-x2^2+12=2x2-m+3
=>\(-x_2^2+22-2m-2x_2+m-3=0\)
=>\(-x_2^2-2x_2-m+19=0\)
=>\(x_2^2+2x_2+m-19=0\)(1)
Để (1) có nghiệmthì 2^2-4(m-19)>0
=>4-4m+76>0
=>80-4m>0
=>m<20
=>3<m<4
Vì phương trình có 2 nghiệm x1;x2
=> Theo vi-ét ta có
x1 + x2 = 2(m+1) và x1x2 = 2m+3
theo bài ra ta có
(x1 - x2)2 = 4
<=> x12 - 2x1x2 + x22 = 4
<=> x12 + 2x1x2 + x22 - 4x1x2 = 4
<=> (x1 + x2)2 - 4x1x2 = 4
<=> 4(m+1)2 - 4(2m+3) = 4
<=> (m+1)2 - (2m+3) = 1
<=> m2 + 2m +1 -2m -3 -1 = 0
<=> m2 - 3 = 0
<=> m2 = 3
<=> m\(=\pm\sqrt{3}\)
Vậy với m\(=\pm\sqrt{3}\) thì phương trình có hai nghiệm x1;x2 thỏa mãn (x1 - x2)2 = 4