Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Gọi chữ số hàng chục là x, chữ số hàng đơn vị là y (10 > x,y > 0)
- Ta có: \(x+y=8\left(a\right)\)
và \(\overline{yx}-\overline{xy}=18\)
\(\Leftrightarrow10y+x-10x-y=18\)
\(\Leftrightarrow9y-9x=18\)
\(\Leftrightarrow9\left(y-x\right)=18\)
\(\Leftrightarrow y-x=2\left(b\right)\)
Từ (a) và (b), ta có hệ phương trình sau: \(\left\{{}\begin{matrix}x+y=8\\y-x=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=8-y\\y-8+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8-y\\2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=5\end{matrix}\right.\)
Vậy: Số cần tìm là 35
Bài 2:
Số thư nhất là (80+14)/2=47
Số thứ hai là 47-14=33
Bài 3:
Gọi số thứ nhât là x
=>Số thứ hai là 7-x
Theo đề, ta co hệ: \(\dfrac{1}{x}+\dfrac{1}{7-x}=\dfrac{7}{12}\)
=>\(\dfrac{7-x+x}{x\left(7-x\right)}=\dfrac{7}{12}\)
=>x(7-x)=12
=>x(x-7)=-12
=>x^2-7x+12=0
=>x=3 hoặc x=4
=>Hai số cần tìm là 3;4
Bài 2 :
Gọi \(x,y\) là 2 số đó
Theo đề, ta có hệ pt :
\(\left\{{}\begin{matrix}x+y=80\\x-y=14\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=47\\y=33\end{matrix}\right.\)
Vậy 2 số đó là 47 và 33
Bài 3 :
Gọi \(x,y\) là 2 số cần tìm
Theo đề, ta có hệ pt :
\(\left\{{}\begin{matrix}x+y=7\\x-y=\dfrac{7}{12}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{91}{24}\\y=\dfrac{77}{24}\end{matrix}\right.\)
Vậy 2 số đó là \(\dfrac{91}{24};\dfrac{77}{24}\)
Gọi lần lượt số thứ nhất và hai là x,y(x,y thuộc N)
\(\Rightarrow x+y=18\) (1)
tăng mỗi số lên 2 đơn vị \(\hept{\begin{cases}x+2\\y+2\end{cases}}\)
tích chúng tăng lên gấp 1.5 lần \(\Rightarrow\left(x+2\right)\left(y+2\right)=1.5\times xy\)(2)
Từ (1) và (2) ta có : (x+2)(18-x+2)=1.5 * x(18-x)
\(\Leftrightarrow\) (x+2)(20-x)=27x-1.5x2
\(\Leftrightarrow\)20x-x2+40-2x-27x+1.5x2=0
\(\Leftrightarrow\)0.5x2-9x+40=0
Xét \(\Delta=b^2-4ac\)
\(\Rightarrow\) =(-9)2-4.(0.5).40
=1>0 =>pt có hai nghiệm phân biệt x1;x2
\(\Rightarrow\hept{\begin{cases}x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-\left(-9\right)-1}{2.\left(0.5\right)}=8\left(tmđkxđ\right)\\x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-\left(-9\right)+1}{2.\left(0.5\right)}=10\left(tmđkxđ\right)_{ }\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y_1=18-8=10\left(tmđkxđ\right)\\y_2=18-10=8\left(tmđkxđ\right)\end{cases}}\)
Vậy hai số cần tìm là 10 và 8
:))
Gọi \(\overline{ab}=10a+b\) là số tự nhiên cần tìm (a>b)
Theo đề ta có
\(\left\{{}\begin{matrix}a+b=8\\10a+b-\left(10b+a\right)=36\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=8\\10a+b-10b-a=36\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=8\\9a-9b=36\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=8\\a-b=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2a=12\\a-b=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=6\\b=2\end{matrix}\right.\)
Vậy số tự nhiên đó là 62
Gọi số đó là ab
Ta có : a + b = 8 (1)
Và ab - 36 = ba (2)
Từ (2) ta có : ab - ba = 36
<=> 10a + b - 10b - a = 36
<=> 9a - 9b = 36
<=> 9( a - b) = 36
<=> a - b = 4 (3)
Kết hợp (1) và (3) ta trở về bài toán tổng - hiệu
Số a là : (8 + 4):2 = 6
Số b là :8 - 6 = 2
Vậy số bạn đầu là 62
gọi số tự nhiên có hai chữ số là ab
nếu đổi vị trí hai chữ số đó thì số mới là ba
vì tổng của hai chữ số bằng 8 nên ta có: a+b=8 (1)
khi đổi vị trí của hai chữ số thì số tự nhiên đó giảm 36 đơn vị nên ta có:
ab -ba =36
10a+b-10b-a=36
9a-9b=36
a-b=4(2)
từ (1) và (2 ) ta có hệ
a+b=8
a-b=4
a=6 và b=2
Đặt số cần tìm là \(\overline{ab},\left(0\le a,b\le9;a,b\inℕ;a\ne0,a+b=8\right)\)
Số sau khi đổi vị trí là \(\overline{ba}\).
Theo bài ra ta có: \(\overline{ab}-\overline{ba}=18\Leftrightarrow10a+b-\left(10b+a\right)=18\Leftrightarrow9a-9b=18\Leftrightarrow a-b=2\)
\(\Rightarrow a-\left(8-a\right)=2\Leftrightarrow2a=10\Leftrightarrow a=5\Rightarrow b=3\)(thỏa)