K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2018

3n-5 chia hết cho n-1

=>3n-3-2 chia hết cho n-1

=>3(n-1)-2 chia hết cho n-1

=>2 chia hết cho n-1

=>n-1 E Ư(2)={1;-1;2;-2}

=>n E {2;0;3;-1}

14 tháng 1 2018

3n - 5 \(⋮\)n - 1

=> 3n - 3 - 2 \(⋮\)n - 1

=> 3 . ( n - 1 ) - 2 \(⋮\)n - 1 mà 3 . ( n - 1 ) \(⋮\)n - 1 => 2 \(⋮\)n - 1

=> n - 1 \(\in\)Ư ( 2 ) = { - 2 ; - 1 ; 1 ; 2 }

=> n thuộc { - 1 ; 0 ; 2 ; 3 }

Vậy  n thuộc { - 1 ; 0 ; 2 ; 3 }

11 tháng 2 2016

a ) 3n + 25 ⋮ n - 4 <=> 3.( n - 4 ) + 37 ⋮ n - 4

Vì n - 4 ⋮ n - 4 . Để 3.( n - 4 ) + 37 ⋮ n - 4 thì 37 ⋮ n - 4 => n - 4 ∈ Ư ( 37 ) = { + 1 ; + 37 }

Ta có : n - 4 = 1 => n = 1 + 4 = 5 ( nhận )

           n - 4 = - 1 => n = - 1 + 4 = 3 ( nhận )

           n - 4 = 37 => n = 37 + 4 = 41 ( nhận )

           n - 4 = - 37 => n = - 37 + 4 = - 33 ( nhận )

Vậy n ∈ { - 33 ; 3 ; 5 ; 41 }

Câu b tương tự

a/ 

n-6 chia hết cho n-1

=>(n-1)-5 chia hết cho n-1

=>n-1 E U(5)={1;-1;5;-5}

=>n E {0;2;6;-4}

vì n E N => n E{0;2;6}

b/3n+2 chia hết cho n-1

=>3(n-1)+5 chia hết cho n-1

=>5 chia hết cho n-1

=>n-1 E U(5)={1;-1;5;-5}

=>n E {0;2;6;-4}

vì n E N => n E{0;2;6}

c/

3n+24 chia hết cho n-4

=>3(n-4)+36 chia hết cho n-4

=>36 chia hết cho n-4

=>n-4 E U(36) ={1;-1;2;-2;3;-3;4;-4;9;-9;12;-12;18;-18;36;-36}

=> =>n E {5;3;6;2;7;1;8;0;13;-5;16;-8;22;-14;40;-32}

vì n E N

=>n E {0;1;3;5;6;7;8;13;16;22;40;}

.........mỏi tay V~

5 tháng 3 2016

a,  n-6 chia hết cho n-1
=> n-1-5 chia hết cho n-1
=> -5 chia hết cho n-1
=> n-1 thuộc Ư(-5)= -5;-1;1;5
Sau đó bạn kẻ bảng ra. Những câu sau làm tương tự, bạn chỉ cần biến đổi sao cho vế phải có dạng là 1 tích và 1 số nguyên, tích đó chia hết cho vế trái, rồi suy ra vế trái thuộc ước của số nguyên đó là được. Chọn nha

10 tháng 2 2018

a, n+2 chia hết cho n-1

=> n-1+3 chia hết cho n-1

=> 3 chia hết cho n-1

=> n-1 thuộc ước của 3

=> n-1 thuộc {-3;-1;1;3}

=> n thuộc {-2;0;2;4}

b, 3n-5 chia hết cho n-2

=> 3n-6+1 chia hết cho n-2

=> 3(n-2)+1 chia hết cho n-2

=> 1 chia hết cho n-2

=> n-2 là ước của 1

=> n-2 thuộc {-1;1}

=> n thuộc {1;3}

làm hộ?????

10 tháng 3 2020

3)

3n+7\(⋮2n+1\)

vì \(3n+7⋮3n+7\)

=>\(2\left(3n+7\right)⋮3n+7\)

=> 6n+7\(⋮3n+7\)

vì \(2n+1⋮2n+1\)

\(\Rightarrow3\left(2n+1\right)⋮2n+1\)

\(\Rightarrow6n+1⋮2n+1\)

\(\Rightarrow\left(6n+7\right)-\left(6n+1\right)⋮2n+1\)

\(\Rightarrow6⋮2n+1\)

đến đoạn này em chỉ cần lập bảng tìm n nữa là xong nhé

10 tháng 3 2020

1) Để \(3n+7⋮2n+1\) \(\Leftrightarrow\)\(2.\left(3n+7\right)⋮2n+1\)

- Ta có: \(2.\left(3n+7\right)=6n+14=\left(6n+3\right)+11=3.\left(2n+1\right)+11\)

-  Để \(2.\left(3n+7\right)⋮2n+1\)\(\Rightarrow\)\(3.\left(2n+1\right)+11⋮2n+1\)mà \(3.\left(2n+1\right)⋮2n+1\)

\(\Rightarrow\)\(11⋮2n+1\)\(\Rightarrow\)\(2n+1\inƯ\left(11\right)\in\left\{\pm1;\pm11\right\}\)

- Ta có bảng giá trị:

\(2n+1\)\(-1\)   \(1\)      \(-11\)\(11\)    
\(n\)\(-1\)\(0\)\(-6\)\(5\)
 \(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)

Vậy \(n\in\left\{-6,-1,0,5\right\}\)

2) Ta có: \(n^2+25=\left(n^2-4\right)+29=\left(n+2\right).\left(n-2\right)+29\)

- Để \(n^2+25⋮n+2\)\(\Rightarrow\)\(\left(n+2\right).\left(n-2\right)+29⋮n+2\)mà \(\left(n+2\right).\left(n-2\right)⋮n+2\)

\(\Rightarrow\)\(29⋮n+2\)\(\Rightarrow n+2\inƯ\left(29\right)\in\left\{\pm1;\pm29\right\}\)

- Ta có bảng giá trị: 

\(n+2\)\(-1\)   \(1\)       \(-29\)\(29\)   
\(n\)\(-3\)\(-1\)\(-31\)\(27\)
 \(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)

 Vậy \(n\in\left\{-31,-3,-1,27\right\}\)

3) Ta có: \(3n^2+5=\left(3n^2-3\right)+8=3.\left(n+1\right).\left(n-1\right)+8\)

- Để \(3n^2+5⋮n-1\)\(\Rightarrow\)\(3.\left(n+1\right).\left(n-1\right)+8⋮n-1\)mà \(3.\left(n+1\right).\left(n-1\right)⋮n-1\)

\(\Rightarrow\)\(8⋮n-1\)\(\Rightarrow n-1\inƯ\left(8\right)\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

- Ta có bảng giá trị:

\(n-1\)\(-1\)\(1\)\(-2\)\(2\)\(-4\)\(4\)\(-8\)\(8\)
\(n\)\(0\)\(2\)\(-1\)\(3\)\(-3\)\(5\)\(-7\)\(9\)
 \(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)

Vậy \(n\in\left\{-7,-3,-1,0,2,3,5,9\right\}\)

22 tháng 11 2021

\(a,\Rightarrow3\left(n+2\right)-7⋮\left(n+2\right)\\ \Rightarrow n+2\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ \Rightarrow n\in\left\{-9;-3;-1;5\right\}\\ b,\Rightarrow\left(n^2+5n-5n-25+23\right)⋮\left(n+5\right)\\ \Rightarrow\left[n\left(n+5\right)-5\left(n+5\right)+23\right]⋮\left(n+5\right)\\ \Rightarrow n+5\inƯ\left(23\right)=\left\{-23;-1;1;23\right\}\\ \Rightarrow n\in\left\{-28;-6;-4;18\right\}\)

AH
Akai Haruma
Giáo viên
22 tháng 11 2021

Lời giải:
a.

$3n-1\vdots n+2$

$\Rightarrow 3(n+2)-7\vdots n+2$

$\Rightarrow 7\vdots n+2$

$\Rightarrow n+2\in \left\{\pm 1; \pm 7\right\}$

$\Rightarrow n\in\left\{-1; -3; 5; -9\right\}$

b.

$n^2-2\vdots n+5$

$\Rightarrow n(n+5)-5(n+5)+23\vdots n+5$

$\Rightarrow (n+5)(n-5)+23\vdots n+5$

$\Rightarrow 23\vdots n+5$

$\Rightarrow n+5\in\left\{\pm 1;\pm 23\right\}$

$\Rightarrow n\in\left\{-4; -6; 18; -28\right\}$

15 tháng 7 2016

a) 3n+2 chia het cho n-1

=> 3(n-1)+5 chia hết cho n-1 => 5 chia hết cho n-1=> \(n-1\in U\left(5\right)=\left\{-5;-1;1;5\right\}\Rightarrow x\in\)\(\left\{-4;0;2;6\right\}\)

15 tháng 7 2016

3n-24 chia hết cho n-4 = > 3(n-4)+36 chia het cho n-4 => n = {...}

15 tháng 7 2016

a) Để \(3n+2⋮n-1\)

\(\Rightarrow\left(3n-3\right)+5⋮n-1\)

\(\Rightarrow3\left(n-1\right)+5⋮n-1\)

\(\Rightarrow\begin{cases}3\left(n-1\right)⋮n-1\\5⋮n-1\end{cases}\)

\(\Rightarrow n-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Ta có bảng sau :

n-1-5-115
n-4026

Vậy \(n\in\left\{-4;0;2;6\right\}\)

b) Để \(3n-24⋮n-4\)

\(\Rightarrow\left(3n-12\right)-12⋮n-4\)

\(\Rightarrow3\left(n-4\right)-12⋮n-4\)

\(\Rightarrow\begin{cases}3\left(n-4\right)⋮n-4\\12⋮n-4\end{cases}\)

\(\Rightarrow n-4\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)

Ta có bảng sau 

n-4-12-6-4-3-2-11234612
n-8-2012356781016

Vậy \(x\in\left\{-8;-2;0;1;2;3;5;6;7;8;10;16\right\}\)

c) Câu c hình như sai hoặc thiếu đề