Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Joen Jungkook - Toán lớp 7 - Học toán với OnlineMath
A D E B F C a)Nối D với F. Xét \(\Delta BDF\) và \(\Delta FDE\) ta có:
\(\widehat{BDF}=\widehat{DFE}\) (so le trong (Vì AB//EF (gt)))
DF cạnh chung
\(\widehat{DFB}=\widehat{FDE}\) (so le trong (Vì DE//BC (gt)))
\(\Rightarrow\Delta BDF\)\(=\Delta FDE\) (g.c.g)
\(\Rightarrow DB=EF\) (2 cạnh tương ứng )
Mà \(DB=DA\) (D là trung điểm AB)
Suy ra AD=EF
b)Xét \(\Delta ADE\) và \(\Delta EFC\:\) ta có:
\(\widehat{ADE}=\widehat{CFE}\) (\(=\widehat{BAC}\); đồng vị của DE//BC và EF//AB)
\(AD=EF\) (cmt)
\(\widehat{DAE}=\widehat{FEC}\) (đồng vị của DE//BC)
\(\Rightarrow\Delta ADE=\Delta EFC\) (g.c.g)
c)Vì \(\Delta ADE=\Delta EFC\) (cmt)
Suy ra \(AE=EC\) (2 cạnh tương ứng )
a) EF là đường trung bình => EF = 1/2 AB
mà BD = 1/2 AB => BD = EF
b) chứng minh giống trên => DE = CF
mà AD = EF và AE = EC => tam giác ADE = tam giác EFC
c) DE = BF và DE // BF
=> BDEF là hình bình hành
=> BE cắt DF tại trung điểm mỗi đường
mà M là trung điểm DF
=> M là trung điểm BE
=> B,M,E thẳng hàng
a) Xét t/g AHB & t/g AHC :
* AB = AC ( gt )
* BH = CH ( H là trung điểm )
* AH chung
=> t/g AHB = t/g AHC
b )
*Ta có :
Góc AHB = AHC ( t/g AHB = t/g AHC )
mà AHB + AHC = 180 ( kb )
=> AHB = AHC = 180 /2= 90
=> BH vuông góc BC
* Góc BAH = CAH ( t/g AHB = t/g AHC )
=> AH là p/g BAC
c)
Xét t/g AOE và t/g AOF :
* AE = AF ( gt )
* AO chung
* Góc EAO = FAO ( t/g _=_)
=> T/g AOE = t/g AOF
d) ....
Buồn buồn làm chơi ..
xét \(\Delta ABC\)có:
\(AE=EB\)( E là trung điểm của \(AB\))
\(AF=FC\)( F là trung điểm của \(AC\))
\(\Rightarrow EF\)là đường trung bình của \(\Delta ABC\)
\(\Rightarrow EF\) song song với \(BC\)và \(EF=\frac{1}{2}BC\)( tính chất)
Despacito Đây là dạng toán lớp 7 nên chưa có đường trung bình, bạn giải theo dạng lớp 7 được không. Cảm ơn bạn nhiều