K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Chứng minh \(\triangle B H A sim \triangle B A C\)

  • Ta có \(\angle B H A = 90^{\circ}\).
  • \(\angle B A C = 90^{\circ}\).
    \(\angle B H A = \angle B A C\).
  • Đồng thời \(\angle A B H = \angle A C B\) (hai góc nhọn phụ nhau trong tam giác vuông).

⇒ Theo trường hợp “góc - góc” (AA), ta có:

\(\triangle B H A sim \triangle B A C .\)


b) Chứng minh \(A H^{2} = H B \cdot H C\)

Đây là hệ thức quen thuộc trong tam giác vuông: đường cao chia cạnh huyền thành 2 đoạn.

  • Từ (a): \(\triangle B H A sim \triangle B A C\).
    \(\frac{B H}{B A} = \frac{B A}{B C}\).
    \(B A^{2} = B H \cdot B C\).
  • Tương tự, \(\triangle A H C sim \triangle A B C\).
    \(A C^{2} = H C \cdot B C\).
  • Cộng lại: \(B A^{2} + A C^{2} = B C \left(\right. B H + H C \left.\right) = B C^{2}\).
  • Lại có: trong tam giác vuông, \(A H^{2} = B H \cdot H C\). (Có thể suy ra trực tiếp từ hai đồng dạng trên).

c) Chứng minh:

  • \(M\) là hình chiếu của \(H\) lên \(A C\).
  • \(P\) là trung điểm \(A B\).
  • \(C P\) cắt \(H M\) tại \(Q\), và cắt \(A H\) tại \(I\).

Cần chứng minh:

  1. \(H A\) là tia phân giác \(\angle P H M\).
  2. \(B , I , M\) thẳng hàng.
  3. Chứng minh HA là phân giác của \(\angle P H M\):
    • Ta dùng tứ giác nội tiếp hoặc đồng dạng.
    • Dễ thấy các tam giác vuông nhỏ xuất hiện quanh điểm \(H , M\).
    • Thường ta chứng minh \(\triangle H A P sim \triangle H A M\) hoặc sử dụng tính chất: \(I\) trên \(A H\) đồng thời thuộc \(C P\), kết hợp với \(Q = C P \cap H M\) ⇒ xuất hiện cặp tam giác đồng dạng, từ đó suy ra \(\frac{H P}{H A} = \frac{H A}{H M}\) ⇒ HA phân giác.
  4. Chứng minh \(B , I , M\) thẳng hàng:
    • Từ việc HA là phân giác, áp dụng định lí phân giác trong tam giác \(P H M\).
    • Ta có \(I\) nằm trên phân giác \(A H\).
    • Từ đó dựng quan hệ tỉ số, và qua biến đổi sẽ ra tính thẳng hàng \(B , I , M\).
T
25 tháng 9

Con Cảm ơn ạ

T
24 tháng 9

Con kính nhờ thầy cô giai giúp con ạ

24 tháng 9

Có cần hình ko

a: Xét ΔBHA vuông tại H và ΔBAC vuông tại A có

\(\hat{HBA}\) chung

Do đó: ΔBHA~ΔBAC

b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

\(\hat{HAB}=\hat{HCA}\left(=90^0-\hat{HBA}\right)\)

Do đó: ΔHAB~ΔHCA

=>\(\frac{HA}{HC}=\frac{HB}{HA}\)

=>\(HA^2=HB\cdot HC\)

c: ΔAHB vuông tại H

mà HP là đường trung tuyến

nên HP=PA=PB

PA=PH

=>ΔPAH cân tại P

=>\(\hat{PAH}=\hat{PHA}\left(1\right)\)

Ta có: HM⊥AC

AB⊥CA

Do đó: HM//AB

=>\(\hat{MHA}=\hat{HAP}\) (hai góc so le trong)(2)

Từ (1),(2) suy ra \(\hat{MHA}=\hat{PHA}\)

=>HA là phân giác của góc MHP

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

1

a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc ACB chung

Do dó ΔCDE đồng dạng với ΔCAB

=>CD/CA=CE/CB

=>CD/CE=CA/CB

=>ΔCDA đồng dạng với ΔCEB

=>EB/DA=BC/AC

mà BC/AC=AC/CH

nên EB/DA=AC/CH=BA/HA

=>BE/AD=BA/HA

=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)

\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)

b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2

nên góc AEB=45 độ

=>ΔABE vuông cân tại A

=>AM vuông góc với BE

BM*BE=BA^2

BH*BC=BA^2

Do đó: BM*BE=BH/BC

=>BM/BC=BH/BE

=>ΔBMH đồng dạng với ΔBCE

27 tháng 12 2021

a) Xét tứ giác AMIN có:

∠(MAN) = ∠(ANI) = ∠(IMA) = 90o

⇒ Tứ giác AMIN là hình chữ nhật (có 3 góc vuông).

b) ΔABC vuông có AI là trung tuyến nên AI = IC = BC/2

do đó ΔAIC cân có đường cao IN đồng thời là đường trung tuyến

⇒ NA = NC.

Mặt khác ND = NI (t/c đối xứng) nên ADCI là hình bình hành

Lại có AC ⊥ ID (gt). Do đó ADCI là hình thoi.

c) Ta có: AB2 = BC2 – AC2 (định lí Py-ta-go)

= 252 – 202 ⇒ AB = √225 = 15 (cm)

Vậy SABC = (1/2).AB.AC = (1/2).15.20 = 150 (cm2)

d) Kẻ IH // BK ta có IH là đường trung bình của ΔBKC

⇒ H là trung điểm của CK hay KH = HC (1)

Xét ΔDIH có N là trung điểm của DI, NK // IH (BK // IH)

Do đó K là trung điểm của DH hay DK = KH (2)

Từ (1) và (2) ⇒ DK = KH = HC ⇒ DK/DC= 1/3.