Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBHA vuông tại H và ΔBAC vuông tại A có
\(\hat{HBA}\) chung
Do đó: ΔBHA~ΔBAC
b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
\(\hat{HAB}=\hat{HCA}\left(=90^0-\hat{HBA}\right)\)
Do đó: ΔHAB~ΔHCA
=>\(\frac{HA}{HC}=\frac{HB}{HA}\)
=>\(HA^2=HB\cdot HC\)
c: ΔAHB vuông tại H
mà HP là đường trung tuyến
nên HP=PA=PB
PA=PH
=>ΔPAH cân tại P
=>\(\hat{PAH}=\hat{PHA}\left(1\right)\)
Ta có: HM⊥AC
AB⊥CA
Do đó: HM//AB
=>\(\hat{MHA}=\hat{HAP}\) (hai góc so le trong)(2)
Từ (1),(2) suy ra \(\hat{MHA}=\hat{PHA}\)
=>HA là phân giác của góc MHP

a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE

a) Xét tứ giác AMIN có:
∠(MAN) = ∠(ANI) = ∠(IMA) = 90o
⇒ Tứ giác AMIN là hình chữ nhật (có 3 góc vuông).
b) ΔABC vuông có AI là trung tuyến nên AI = IC = BC/2
do đó ΔAIC cân có đường cao IN đồng thời là đường trung tuyến
⇒ NA = NC.
Mặt khác ND = NI (t/c đối xứng) nên ADCI là hình bình hành
Lại có AC ⊥ ID (gt). Do đó ADCI là hình thoi.
c) Ta có: AB2 = BC2 – AC2 (định lí Py-ta-go)
= 252 – 202 ⇒ AB = √225 = 15 (cm)
Vậy SABC = (1/2).AB.AC = (1/2).15.20 = 150 (cm2)
d) Kẻ IH // BK ta có IH là đường trung bình của ΔBKC
⇒ H là trung điểm của CK hay KH = HC (1)
Xét ΔDIH có N là trung điểm của DI, NK // IH (BK // IH)
Do đó K là trung điểm của DH hay DK = KH (2)
Từ (1) và (2) ⇒ DK = KH = HC ⇒ DK/DC= 1/3.
a) Chứng minh \(\triangle B H A sim \triangle B A C\)
⇒ \(\angle B H A = \angle B A C\).
⇒ Theo trường hợp “góc - góc” (AA), ta có:
\(\triangle B H A sim \triangle B A C .\)
b) Chứng minh \(A H^{2} = H B \cdot H C\)
Đây là hệ thức quen thuộc trong tam giác vuông: đường cao chia cạnh huyền thành 2 đoạn.
⇒ \(\frac{B H}{B A} = \frac{B A}{B C}\).
⇒ \(B A^{2} = B H \cdot B C\).
⇒ \(A C^{2} = H C \cdot B C\).
c) Chứng minh:
Cần chứng minh:
Con Cảm ơn ạ