Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 6:
a: Để A giao B khác rỗng thì 2m+2<=4 hoặc m-1>=-2
=>m<=1 hoặc m>=-1
b: Để A là tập con của B thì m-1>-2 và 4<=2m+2
=>m>-1 và 2m+2>=4
=>m>-1 và m>=1
=>m>=1
c: Để B là tập con của B thì m-1<-2 và 2m+2<=4
=>m<-1 và m<=1
=>m<-1

Lời giải:
$A\cap B\cap C=A\cap (B\cap C)$
Để tập hợp trên khác rỗng thì trước hết $B\cap C\neq \varnothing$
Điều này xảy ra khi $2m>m\Leftrightarrow m>0$
Khi đó: $B\cap C=(m; 2m)$
$\Rightarrow A\cap B\cap C=((-3;-1)\cup (1;2))\cap (m; 2m)$
$=((-3;-1)\cap (m;2m))\cup ((1;2)\cap (m; 2m))$
$=(1;2)\cap (m; 2m)$ (do $m>0$)
Để $(1;2)\cap (m; 2m)\neq \varnothing$ thì:
\(\left\{\begin{matrix} 2m>1\\ m< 2\end{matrix}\right.\Leftrightarrow m\in (\frac{1}{2};2)\)
Vậy...........

1: A={-3;-2;-1;0;1;2;3}
B={2;-2;4;-4}
A giao B={2;-2}
A hợp B={-3;-2;-1;0;1;2;3;4;-4}
2: x thuộc A giao B
=>\(x=\left\{2;-2\right\}\)

Đúng bạn
- Nếu \(\left\{{}\begin{matrix}m-1\ge-2\\\frac{m+1}{2}\le2\end{matrix}\right.\) \(\Leftrightarrow-1\le m\le3\) thì \(A\cap B=\varnothing\) (ktm)
- Nếu \(m< -1\Rightarrow m-1< -2\Rightarrow A\cap B=[m-1;2)\) chứa vô số phần tử
- Nếu \(m>3\Rightarrow A\cap B=(2;\frac{m+1}{2}]\) cũng chứa vô số phần tử
Vậy ko tồn tại m để \(A\cap B\) chỉ chứa 1 phần tử
hình như đề sai đúng không ta ai đấy giải thử cho em xem vs ạ

\(x^4-16\left(x^2-1\right)=0\Leftrightarrow x^4-16x^2+16=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=8+4\sqrt{3}\\x^2=8-4\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow A=\left\{-\sqrt{6}-\sqrt{2};\sqrt{2}-\sqrt{6};\sqrt{6}-\sqrt{2};\sqrt{2}+\sqrt{6}\right\}\)
\(2x\le9\Rightarrow x\le\frac{9}{2}\Rightarrow B=\left\{0;1;2;3;4\right\}\)
Bạn coi lại đề, tập hợp A nhìn rất có vấn đề :)
Câu 25. Hai đoạn \(A = \left[\right. a ; a + 2 \left]\right.\), \(B = \left[\right. b ; b + 1 \left]\right.\), tìm số \(a - b\) nguyên để \(A \cap B = \emptyset\)
Điều kiện \(A \cap B = \emptyset\) nghĩa là:
\(a + 2 < b \text{ho}ặ\text{c} b + 1 < a\)
Vậy \(a - b\) nguyên thỏa:
\(a - b < - 2 \text{ho}ặ\text{c} a - b > 1\)
Câu 26. Ba tập hợp:
\(A = \left(\right. - 3 , - 1 \left.\right) \cup \left(\right. 1 , 2 \left.\right) , B = \left(\right. m - 1 , + \infty \left.\right) , C = \left(\right. - \infty , 2 m + 1 \left.\right)\)
Điều kiện \(A \cap B \cap C = \emptyset\) nghĩa là không có phần tử chung.
Bước 1: Giao \(A\) và \(B\)
Giao không rỗng nếu:
Bước 2: Giao với \(C = \left(\right. - \infty , 2 m + 1 \left.\right)\)
Câu 33: Để a nguyên thì 3b-8⋮b+2
=>3b+6-14⋮b+2
=>-14⋮b+2
=>b+2∈{1;-1;2;-2;7;-7;14;-14}
=>b∈{-1;-3;0;-4;5;-9;12;-16}
=>A có 8 phần tử
Câu 32:
Để B khác rỗng thì 2a<3a+1
=>-a<1
=>a>-1
Để A giao B=rỗng thì 2a>=5 hoặc 3a+1<0
=>a>=5/2 hoặc a<-1/3
=>a>=5/2 hoặc -1<a<-1/3
mà a nguyên
nên a>=5/2
=>Có vô số giá trị a nguyên để A giao B=rỗng