
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


456 x 128 / 451 x 128 =58368/57728
123 x 451 / 128 x 451 = 55473/57728
so sánh : 58368/57728 ...>.... 55473/ 57728
vậy suy ra : 456/451 ....>.... 123/128
tk mk nha mk nhanh nhất
\(\frac{456}{451}\) > \(\frac{123}{128}\)tích cho mik nhé

4.2x - 3 = 123
= > 123 + 3 = 4.2x
= > 126 = 4.2x
= 126 = 8x
= > x = 126 : 8
x = 15,75 (16)
Đs:
Ps: Hình như đề bài có vấn đề, còn nếu mình làm sai thì đừng trách nhá
(=) 4.2\(^x\)=123+3
(=) 4.2\(^x\)=126
(=) 2\(^x\)=126/4
(=) 2\(^x\)= 31.5
=> hình như sai đề, ktra lại đề r giải giống như trên

Bài này chắc tìm x;y nguyên rồi
\(\frac{x}{7}-\frac{1}{2}=\frac{1}{y+2}\Leftrightarrow\frac{2x-7}{14}=\frac{1}{y+2}\Leftrightarrow\left(2x-7\right)\left(y+2\right)=14\)
Ta có bảng sau:
2x-7 | -14 | -7 | -2 | -1 | 1 | 2 | 7 | 14 |
y+2 | -1 | -2 | -7 | -14 | 14 | 7 | 2 | 1 |
x | -7/2 | 0 | 5/2 | 3 | 4 | 9/2 | 7 | 21/2 |
y | -3 | -4 | -9 | -16 | 12 | 5 | 0 | -1 |
Vì x;y nguyên nên có 4 cặp số x;y thỏa mãn là .....


Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{8}\left(x< y\right)\)
Đặt \(x=\frac{1}{2}y\)
Ta có: x là 1 phần , y là 2 phần
Ta có sơ đồ:
x: I--------------------I Vì \(\frac{1}{x}+\frac{1}{y}=\frac{1}{8}\Rightarrow x+y=8\)
y: I--------------------I--------------------I
Áp dụng tổng số phần bằng nhau đã học ở lớp 5:
1 + 2 = 3 phần
Suy ra x = 8 : 3 x 1 = 2.6
Suy ra y = 8 - 2.6 = 5.4
Quy ra phần số: \(\frac{1}{x}=\frac{1}{2.6}=\frac{5}{13}\)( 1 : 2,6 = 5/13)
Quy ra phân số: \(\frac{1}{y}=\frac{1}{5.4}=\frac{5}{27}\)( 1 : 5,4 = 5/27)
\(\Rightarrow\orbr{\begin{cases}x=13\\y=27\end{cases}}\) (vì x và y đều là mẫu của phân số mà ta đã quy ra)
đúng rồi 100%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

a)
x=3 y=0
b)x=1 y=1
c)x=0 y=7 mình không biết có đúng ko nữa bạn suy nghĩ xem nhé #kết bạn với mk nha# cho hỏi người lạ minhf trả lời thế có k ko <3
Bước 1: Viết lại phương trình cho rõ hơn
Ta có:
\(5 \times 2^{y} = 2^{x + 1} - 123\)
Chúng ta cần tìm các cặp số \(\left(\right. x , y \left.\right)\) thỏa mãn phương trình này.
Bước 2: Phân tích phương trình
Vì thế, ta có thể viết lại:
\(2^{x + 1} = 5 \times 2^{y} + 123\)
Bước 3: Khám phá các giá trị khả thi
Lưu ý:
Bước 4: Thử các giá trị của \(y\)
Trường hợp 1: \(y = 0\)
\(5 \times 2^{0} = 5\)
Phương trình trở thành:
\(5 = 2^{x + 1} - 123\)
\(2^{x + 1} = 128\)
Vì \(128 = 2^{7}\):
\(x + 1 = 7 \Rightarrow x = 6\)
Vậy, cặp nghiệm là:
\(\boxed{\left(\right. x , y \left.\right) = \left(\right. 6 , 0 \left.\right)}\)
Trường hợp 2: \(y = 1\)
\(5 \times 2^{1} = 10\)
Phương trình:
\(10 = 2^{x + 1} - 123\)
\(2^{x + 1} = 133\)
Không phải là một lũy thừa của 2 (vì \(2^{7} = 128\) và \(2^{8} = 256\)), nên không có nghiệm.
Trường hợp 3: \(y = 2\)
\(5 \times 2^{2} = 20\)
\(20 = 2^{x + 1} - 123\)
\(2^{x + 1} = 143\)
Không phải là lũy thừa của 2.
Các giá trị của \(2^{y}\) tăng dần, và \(5 \times 2^{y}\) sẽ là các số chẵn, cộng 123 (số lẻ) sẽ luôn cho ra tổng là số lẻ.
Vì vậy, \(2^{x + 1}\) phải là số lẻ, nhưng lũy thừa của 2 là số chẵn (trừ \(2^{0} = 1\)), và chỉ có \(2^{0} = 1\) là số lẻ.
Bước 5: Kiểm tra \(y = 0\) — đã có nghiệm
Chúng ta đã thấy khi \(y = 0\), \(x = 6\).
Kết luận:
\(\boxed{\left(\right. x , y \left.\right) = \left(\right. 6 , 0 \left.\right)}\)