K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 giờ trước (9:43)

Cách 1: MI//DF

BD⊥FD

Do đó: MI⊥BD

Ta có: MI//DF
=>\(\hat{IMB}=\hat{ACB}\) (hai góc đồng vị)

\(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)

nên \(\hat{EBM}=\hat{IMB}\)

Xét ΔEBM vuông tại E và ΔIMB vuông tại I có

MB chung

\(\hat{EBM}=\hat{IMB}\)

Do đó: ΔEBM=ΔIMB

=>BI=EM; EB=MI

Xét tứ giác IDFM có

ID//MF

IM//DF

Do đó: IDFM là hình bình hành

=>MF=ID

MF+ME=IB+ID=BD ko đổi

Cách 2:

Ta có: BD⊥AC
MF⊥AC

Do đó: BD//MF

=>ID//MF

Xét tứ giác IDFM có

ID//FM

ID=MF

Do đó: IDFM là hình bình hành

=>IM//DF
mà DF⊥BD

nên IM⊥BD tại I

Xét ΔEBM vuông tại E và ΔIMB vuông tại I có

MB chung

\(\hat{EBM}=\hat{IMB}\left(=\hat{ACB}\right)\)

Do đó: ΔEBM=ΔIMB

=>EM=BI

EM+MF

=BI+ID

=BD không đổi

12 giờ trước (11:09)

BD⊥FD

Do đó: MI⊥BD

Ta có: MI//DF
=>\(\hat{I M B} = \hat{A C B}\) (hai góc đồng vị)

mà \(\hat{A B C} = \hat{A C B}\) (ΔABC cân tại A)

nên \(\hat{E B M} = \hat{I M B}\)

Xét ΔEBM vuông tại E và ΔIMB vuông tại I có

MB chung

\(\hat{E B M} = \hat{I M B}\)

Do đó: ΔEBM=ΔIMB

=>BI=EM; EB=MI

Xét tứ giác IDFM có

ID//MF

IM//DF

Do đó: IDFM là hình bình hành

=>MF=ID

MF+ME=IB+ID=BD không đổi.

CHÚC BẠN HỌC TỐT!!! ^^

a: Xét tứ giác AEMF có \(\hat{AEM}=\hat{AFM}=\hat{FAE}=90^0\)

nên AEMF là hình chữ nhật

=>EF=AM

b: Gọi O là giao điểm của AM và EF

AEMF là hình chữ nhật

=>AM cắt EF tại trung điểm của mỗi đường

=>O là trung điểm chung của AM và EF

=>\(OA=OM=\frac{AM}{2};OE=OF=\frac{EF}{2}\)

mà AM=EF

nên \(OA=OM=OE=OF=\frac{AM}{2}=\frac{EF}{2}\)

ΔAHM vuông tại H

mà HO là đường trung tuyến

nên \(HO=\frac{AM}{2}=\frac{EF}{2}\)

Xét ΔHEF có

HO là đường trung tuyến

\(HO=\frac{FE}{2}\)

Do đó: ΔHEF vuông tại H

=>HE⊥HF

2 tháng 3 2020

Câu c có khá nhiều cách giải,nhưng mình trình bày 1 cách thôi nhá :)

2 tháng 3 2020

Câu c là lấy H đối xừng với B qua M,Kẻ đường thẳng song song với AE vắt EM,AF lần lượt tại V và W ạ

15 tháng 6 2016

M=cuc cut

15 tháng 6 2016

M=cuc cut

Kẻ CK vuông góc với đường thằng FM.

Tứ giác HCKF có 3 góc vuông nên nó là hình chữ nhật.

Xét ∆FMB và ∆KMC:

\(\widehat{BFM}=\widehat{CKM}=90^o\)

\(\widehat{FMB}=\widehat{KMC}\) (2 góc đối đỉnh)

=> ∆FMB~∆KMC (g.g)

=> \(\widehat{FBM}=\widehat{KCM}\)

Xét ∆ECM và ∆KCM:

MC: cạnh chung

\(\widehat{ECM}=\widehat{KCM}\left(=\widehat{FBM}\right)\)

\(\widehat{CEM}=\widehat{CKM}=90^o\)

=> ∆ECM=∆KCM (ch.gn)

=> ME=MK (2 cạnh tương ứng)

Ta có: MF+ME=MF+MK=FK

Mà HCKF là hình chữ nhật(cmt) nên FK=CH

=> MF+ME=CH

Vì ∆ABC không đổi nên CH không đổi, từ đó suy ra tổng MF+ME không đổi khi M di chuyển trên BC.

26 tháng 4 2019

đổi k ko các bạn?