
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1) \(\frac{xy}{x^2+y^2}=\frac{3}{8}\Leftrightarrow3x^2+3y^2-8xy=0\)
Nhận thấy điều kiện của phương trình là x,y cùng khác 0
Chia cả hai vê của phương trình trên cho \(y^2\ne0\)được :
\(3\left(\frac{x}{y}\right)^2-8\left(\frac{x}{y}\right)+3=0\). Đặt \(a=\frac{x}{y}\), phương trình trở thành : \(3a^2-8a+3=0\Leftrightarrow\orbr{\begin{cases}x=\frac{4+\sqrt{7}}{3}\\x=\frac{4-\sqrt{7}}{3}\end{cases}}\)
Từ đó rút ra được tỉ lệ của \(\frac{x}{y}\). Bạn thay vào tính A là được :)
2) \(\frac{x^9-1}{x^9+1}=7\Leftrightarrow\frac{x^9-1}{x^9+1}-1=6\Leftrightarrow\frac{-2}{x^9+1}=6\Leftrightarrow x^9=\frac{-2}{6}-1=-\frac{4}{3}\)
Ta có \(A=\frac{\left(x^9\right)^2-1}{\left(x^9\right)^2+1}\). Thay giá trị của x9 vừa tính ở trên vào là được :)

\(\frac{xy}{x^2+y^2}=\frac{3}{8}\Rightarrow xy=\frac{3}{8}\left(x^2+y^2\right)\)
=>\(A=\frac{x^2+y^2+\frac{3}{4}\left(x^2+y^2\right)}{x^2+y^2-\frac{3}{4}\left(x^2+y^2\right)}=\frac{\frac{7}{4}\left(x^2+y^2\right)}{\frac{1}{4}\left(x^2+y^2\right)}=7\)

\(A=2x^2+y^2-2xy-2x+3\)
\(A=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2\)
\(A=\left(x-y\right)^2+\left(x-1\right)^2+2\)
Mà \(\left(x-y\right)^2\ge0\forall x;y\)
\(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow A\ge2\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=1\end{cases}}\)
Vậy Min A = 2 khi x=y=1

Ta có:
\(x^2+y^2+5+2x-4y\)
\(=\left(x^2+2x+1\right)+\left(y^2-4y+4\right)\)
\(=\left(x+1\right)^2+\left(y-2\right)^2\)\(>0\)
\(\Rightarrow\)\(\left|x^2+y^2+5+2x-4y\right|=\left(x+1\right)^2+\left(y-2\right)^2\)
\(-\left(x+y-1\right)^2\)\(< 0\)
\(\Rightarrow\)\(\left|-\left(x+y-1\right)^2\right|=\left(x+y-1\right)^2\)
\(\left|x^2+y^2+5+2x-4y\right|-\left|-\left(x+y-1\right)^2\right|+2xy\)
\(=\left(x+1\right)^2+\left(y-2\right)^2-\left(x+y-1\right)^2+2xy\)
\(=4x-2y+4\) (rút gọn nha)
\(=4.2^{2011}-2.16^{503}+4\)
\(=2^{2013}-2^{2013}+4=4\)
P/s: bn tham khảo nhé, mk ko biết đúng or sai, lm bừa
Bạn nhân đơn thức với đa thức sau đó nhóm hạng tử sử dụng hằng đẳng thức sau đó thay x - y = 7 vào biểu gồm:
\(A = x \left(\right. x + 2 \left.\right) + y \left(\right. y - 2 \left.\right) - 2 x y + 37\)
\(A = x^{2} + 2 x + y^{2} - 2 y - 2 x y + 37\)
\(A = \left(\right. x^{2} - 2 x y + y^{2} \left.\right) + 2 \left(\right. x - y \left.\right) + 37\)
Tiếp tục thay \(x - y = 7\)và biểu thức ta có:
\(A = 7^{2} + 2.7 + 37 = 49 + 14 + 37 = 100\)
Vậy Giá trị của biểu thức A = 100 khi x-y = 7
Bạn nhân đơn thức với đa thức sau đó nhóm hạng tử sử dụng hằng đẳng thức sau đó thay x - y = 7 vào biểu gồm:
\(A = x \left(\right. x + 2 \left.\right) + y \left(\right. y - 2 \left.\right) - 2 x y + 37\)
\(A = x^{2} + 2 x + y^{2} - 2 y - 2 x y + 37\)
\(A = \left(\right. x^{2} - 2 x y + y^{2} \left.\right) + 2 \left(\right. x - y \left.\right) + 37\)
Tiếp tục thay \(x - y = 7\)và biểu thức ta có:
\(A = 7^{2} + 2.7 + 37 = 49 + 14 + 37 = 100\)
Vậy Giá trị của biểu thức A = 100 khi x-y = 7