K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2017

Hai bài trên áp dụng công thức với khoảng cách là 2.

Ta có:

\(D=1+2^1+2^2+2^3+.....+2^{150}\)

\(\Rightarrow2D-D=\left(2+2^2+2^3+2^4+.....+2^{151}\right)-\left(1+2+2^2+2^3+....+2^{150}\right)\)

\(\Rightarrow D=2^{151}-1\)

\(E=1+4^1+4^2+....+4^{400}\)

\(\Rightarrow4E-E=\left(4+4^2+4^3+....+4^{401}\right)-\left(1+4^1+4^2+....+4^{400}\right)\)

\(\Rightarrow E\left(4-1\right)=4^{401}-1\Leftrightarrow E=\frac{4^{401}-1}{4-1}\)

Các câu còn lại làm tương tự

1. b. 5 mũ 3 .2 -100 : 4 + 2 mũ 3 .5 c. 6 mũ 2 :9 + 50.2 -3 mũ 3. 3 d. 3 mũ 2 .5 + 2 mũ 3 .10 - 81:3 e. 5 mũ 13 : 5 mũ 10 - 25. 2 mũ 2 f. 20 : 2 mũ 2 + 5 mũ 9 : 5 mũ 8 g. 100 : 5 mũ 2 + 7 . 3 mũ 2 h.84 : 4 + 3 mũ 9 : 3 mũ 7 + 5 mũ 0 i. 29- [16+3 .(51-49) J. ( 15 mũ 19: 5 mũ 17 + 3) 0 : 7 k. 7 mũ 9 : 7 mũ 7 - 3 mũ 2 + 2 mũ 3 . 5 mũ 2 l. 1200:2+6 mũ 2 . 2 mũ 1 + 18 m. 5 mũ 9 : 5 mũ 7 + 70 :14 -20 n. 3 mũ 2 . 5 - 2 mũ 2 .7 + 83 o. mũ 9...
Đọc tiếp

1. b. 5 mũ 3 .2 -100 : 4 + 2 mũ 3 .5

c. 6 mũ 2 :9 + 50.2 -3 mũ 3. 3

d. 3 mũ 2 .5 + 2 mũ 3 .10 - 81:3

e. 5 mũ 13 : 5 mũ 10 - 25. 2 mũ 2

f. 20 : 2 mũ 2 + 5 mũ 9 : 5 mũ 8

g. 100 : 5 mũ 2 + 7 . 3 mũ 2

h.84 : 4 + 3 mũ 9 : 3 mũ 7 + 5 mũ 0

i. 29- [16+3 .(51-49)

J. ( 15 mũ 19: 5 mũ 17 + 3) 0 : 7

k. 7 mũ 9 : 7 mũ 7 - 3 mũ 2 + 2 mũ 3 . 5 mũ 2

l. 1200:2+6 mũ 2 . 2 mũ 1 + 18

m. 5 mũ 9 : 5 mũ 7 + 70 :14 -20

n. 3 mũ 2 . 5 - 2 mũ 2 .7 + 83

o. mũ 9 : 5 mũ 7+ 12.3 + 7 mũ 0

p. 5 . 2 mũ 2 + 98 : 7 mũ 2

q. 3 mũ 11 : 3 mũ 9 _ 147 : 7 mũ 2

r. 295 - ( 31 - 2 mũ 2 . 5 ) mũ 2

s. 151 - 2 mũ 91 : 2 mũ 88 + 1 mũ 2 . 3

t. 2 mũ 38 : 2 mũ 36 + 5 mũ 1 . 3 mũ 2 - 7 mũ 2

u. 7 mũ 91 : 7 mũ 89 + 5. 5 mũ 2 - 124

v. 4 . 15 + 28:7-6 mũ 20 : 6 mũ 18

w. ( 3 mũ 2 + 2 mũ 3 . 5 ) : 7

x. 11 mũ 25 : 11 mũ 23 - 3 mũ 5 : ( 1 mũ 10 + 2 mũ 3 ) - 60

y. 5 mũ 20 : ( 5 mũ 15 . 6 + 5 mũ 15 . 19)

z. 7 mũ 18 : 7 mũ 16 + 2 mũ 2 . 3 mũ 3

t.59. 73- 30 mũ 2 + 27 . 59

7
22 tháng 12 2017

a,\(5^3.2-100:4+2^3.5\)

= 125 . 2 - 25 + 8 . 5

= 250 - 25 + 40

= 265

b, \(6^2:9+50.2-3^3.3\)

= 36 : 9 + 100 - 27 . 3

= 4 + 100 - 81

= 23

21 tháng 10 2019

b) \(5^3\cdot2-100:4+2^3\cdot5\)

\(=125\cdot2-25+8\cdot5\)

\(=250-25+40\)

\(=225+40=265\)

c) \(6^2:9+50\cdot2+3^3-3\)

\(=36:9+100+27-3\)

\(=4+100+27-3\)

\(=104+27-3=131-3=128\)

d) \(3^2\cdot5+2^3\cdot10-81:3\)

\(=9\cdot5+8\cdot10-27\)

\(=45+80-27\)

\(=125-27=98\)

e) \(5^{13}:5^{10}-25\cdot2^2\)

\(=5^{13-10}-5^2\cdot2^2\)

\(=5^3-\left(5\cdot2\right)^2\)

\(=125-10^2\)

\(=125-100=25\)

f) \(20:2^2+5^9:5^8\)

\(=20:4+5^{9-8}\)

\(=5+5^1=5+5=10\)

g) \(100:5^2+7\cdot3^2\)

\(=10^2:5^2+7\cdot9\)

\(=\left(10:5\right)^2+63\)

\(=2^2+63=4+63=67\)

h) \(84:4+3^9:3^7+5^0\)

\(=21+3^{9-7}+1\)

\(=21+3^2+1\)

\(=21+9+1=30+1=31\)

i) \(29-\left[16+3\cdot\left(51-49\right)\right]\)

\(=29-\left[16+3\cdot2\right]\)

\(=29-\left[16+6\right]\)

\(=29-22=7\)

j) \(\left(15^{19}:5^{17}+3\right)\cdot0:7\)

\(=\left[\left(3\cdot5\right)^{19}:5^{17}+3\right]\cdot0\)

Vì số nào nhân cho 0 cũng bằng 0 nên giá trị biểu thức trên bằng 0

k) \(7^9:7^7-3^2+2^3\cdot5\)

\(=7^{9-7}-9+8\cdot5\)

\(=7^2-9+40\)

\(=49-9+40=40+40=80\)

l) \(1200:2+6^2\cdot2^1+18\)

\(=600+36\cdot2+18\)

\(=600+72+18\)

\(=600+\left(72+18\right)=600+90=690\)

m) \(5^9:5^7+70:14-20\)

\(=5^{9-7}+5-20\)

\(=5^2+5-20\)

\(25+5-20=30-20=10\)

Những câu sau mình làm sau nhé bạn!!!!!!!

5 tháng 10 2019

a) \(\left(3^4.57-9^2.21\right):3^5\)

\(=\left(3^4.57-3^4.21\right):3^5\)

\(=\left[3^4\left(57-21\right)\right]:3^5\)

\(=3^4.36:3^5\)

\(=3^4.2^2.3^2:3^5\)

\(=3.4\)

\(=12\)

b) Ta có; \(1^3+2^3+...+9^3=2025\)

\(\Leftrightarrow2^3.\left(1^3+2^3+....+9^3\right)=2^3.2025\)

\(\Leftrightarrow2^3+4^5+...+18^3=16200\)

13 tháng 7 2017

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 ) 
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101 
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21 
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 ) 
=> A = 2^21 là một lũy thừa của 2 
3. 
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100) 
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2 
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101 
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 ) 
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2 
c) xem lại đề ý c xem quy luật như thế nào nhé. 
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151 
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150) 
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

13 tháng 7 2017

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 ) 
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101 
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21 
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 ) 
=> A = 2^21 là một lũy thừa của 2 
3. 
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100) 
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2 
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101 
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 ) 
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2 
c) xem lại đề ý c xem quy luật như thế nào nhé. 
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151 
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150) 
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

24 tháng 11 2017

Ta có : \(2^3+4^3+6^3+...+18^3\)

\(=2^3\left(1^3+2^3+...+9^3\right)\)

\(=8.2025\)

\(=16200\)

Vậy tổng trên bằng 16200

3 tháng 5 2020

Tran Phuong Chi            

22 tháng 10 2019

1. \(6x^3-8=40\\ 6x^3=48\\ x^3=8\\ \Rightarrow x=2\)Vậy x = 2

2. \(4x^5+15=47\\ 4x^5=32\\ x^5=8\\ \Rightarrow x\in\varnothing\left(\text{vì }x\in N\right)\)Vậy x ∈ ∅

3. \(2x^3-4=12\\ 2x^3=16\\ x^3=8\\ \Rightarrow x=2\)Vậy x = 2

4. \(5x^3-5=0\\ 5x^3=5\\ x^3=1\\ \Rightarrow x=1\)Vậy x = 1

5. \(\left(x-5\right)^{2016}=\left(x-5\right)^{2018}\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\x-5=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)Vậy \(x\in\left\{5;6\right\}\)

6. \(\left(3x-2\right)^{20}=\left(3x-1\right)^{20}\\ \Rightarrow3x-2=3x-1\\ 3x-3x=2-1\\ 0=1\left(\text{vô lí}\right)\)Vậy x ∈ ∅

7. \(\left(3x-1\right)^{10}=\left(3x-1\right)^{20}\\ \left(3x-1\right)^{10}=\left[\left(3x-1\right)^2\right]^{10}\\ \Rightarrow\left(3x-1\right)^2=3x-1\\ \left(3x-1\right)^2-\left(3x-1\right)=0\\ \left(3x-1\right)\left[\left(3x-1\right)-1\right]=0\\ \left(3x-1\right)\left(3x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x-1=0\\3x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x=1\\3x=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{3}\left(\text{loại vì }x\in N\right)\\x=\frac{2}{3}\left(\text{loại vì }x\in N\right)\end{matrix}\right.\)Vậy x ∈ ∅

8. \(\left(2x-1\right)^{50}=2x-1\\ \left(2x-1\right)^{50}-\left(2x-1\right)=0\\ \left(2x-1\right)\left[\left(2x-1\right)^{49}-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}2x-1=0\\\left(2x-1\right)^{49}=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=1\\2x-1=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}\left(\text{loại vì }x\in N\right)\\x=1\left(t/m\right)\end{matrix}\right.\)Vậy x = 1

9. \(\left(\frac{x}{3}-5\right)^{2000}=\left(\frac{x}{3}-5\right)^{2008}\\ \left(\frac{x}{3}-5\right)^{2008}-\left(\frac{x}{3}-5\right)^{2000}=0\\ \left(\frac{x}{3}-5\right)^{2000}\left[\left(\frac{x}{3}-5\right)^8-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}\left(\frac{x}{3}-5\right)^{2000}=0\\\left(\frac{x}{3}-5\right)^8=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\frac{x}{3}-5=0\\\frac{x}{3}-5=1\\\frac{x}{3}-5=-1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\frac{x}{3}=5\\\frac{x}{3}=6\\\frac{x}{3}=4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\cdot3=15\\x=6\cdot3=18\\x=4\cdot3=12\end{matrix}\right.\)Vậy \(x\in\left\{15;18;12\right\}\)

22 tháng 10 2019

\(1.6x^3-8=40\\ \Leftrightarrow6x^3=48\\ \Leftrightarrow x^3=8\Leftrightarrow x^3=2^3=\left(-2\right)^3\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy \(x\in\left\{2;-2\right\}\)

\(2.4x^3+15=47\) (T nghĩ đề là mũ 3)

\(\Leftrightarrow4x^3=32\Leftrightarrow x^3=8=2^3=\left(-2\right)^3\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy \(x\in\left\{2;-2\right\}\)

Câu 3, 4 tương tự nhé.

30 tháng 9 2019

a,\(2^4\cdot3^5:6^4\)

\(=\frac{2^4\cdot3^6}{\left(2\cdot3\right)^4}\)

\(=\frac{2^4\cdot3^6}{2^4\cdot3^4}\)

\(=3^2\)

30 tháng 9 2019

Bài 2

\(a,5^3\cdot8=5^3\cdot2^3=10^3=1000\)

\(b,2^5-2019^0=32-1=31\)

\(c,3^3+2^5-1^{10}=27+32-1=58\).

\(d,9^2\cdot33-81\cdot23+5^2=81\cdot33-81\cdot23+25\)

\(=81\cdot\left(33-23\right)+25\)

\(=810+25=835\)

\(g,\left[2^2+6^2\right]:5+11^2\)

\(=\left[4+36\right]:5+121\)

\(=40:5+121=8+121\)

\(=129\)

\(d,\frac{14\cdot3^{10}-5\cdot3^{10}}{3^{12}}\)

\(=\frac{3^{10}\cdot\left(14-5\right)}{3^{12}}\)

\(=\frac{3^{10}\cdot9}{3^{12}}\)

\(=\frac{3^{10}\cdot3^2}{3^{12}}=\frac{3^{12}}{3^{12}}\)

\(=1\)

18 tháng 8 2017

ghi cái j vậy

ai mk hỉu đc

18 tháng 8 2017

thử đọc lại xem