
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


ĐKXĐ: x>0
Ta có: \(\frac{\sqrt{x}-1}{x-\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(x-\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\frac{x-1-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\frac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\cdot\left(x-\sqrt{x}+1\right)}\)
Ta có: \(A=\left(x+\frac{1}{\sqrt{x}}\right)\left(\frac{\sqrt{x}-1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right)\)
\(=\frac{x\sqrt{x}+1}{\sqrt{x}}\cdot\frac{\sqrt{x}-2}{x\sqrt{x}+1}=\frac{\sqrt{x}-2}{\sqrt{x}}\)
Để A nguyên thì \(\sqrt{x}-2\) ⋮\(\sqrt{x}\)
=>-2⋮\(\sqrt{x}\)
=>\(\sqrt{x}\) ∈{1;2}
=>x∈{1;4}

\(a=\sqrt[3]{7+5\sqrt2}+\sqrt[3]{7-5\sqrt2}\)
\(=\sqrt[3]{2\sqrt2+6+\sqrt2+1}+\sqrt[3]{2\sqrt2-6+\sqrt2-1}\)
\(=\sqrt[3]{\left(\sqrt2\right)^3+3\cdot\left(\sqrt2\right)^2\cdot1+3\cdot\sqrt2\cdot1^2+1^3}+\sqrt[3]{\left(\sqrt2\right)^3-3\cdot\left(\sqrt2\right)^2\cdot1+3\cdot\sqrt2\cdot1^2-1^3}\)
\(=\sqrt[3]{\left(\sqrt2+1\right)^3}+\sqrt[3]{\left(\sqrt2-1\right)^3}=\sqrt2+1+\sqrt2-1=2\sqrt2\)
\(D=2a^4+6a^2-28a+2024\)
\(=2\cdot\left(2\sqrt2\right)^4+6\cdot\left(2\sqrt2\right)^2-28\cdot2\sqrt2+2024=2200-56\sqrt2\)

Ta có: \(\frac{\sqrt{x}+2}{x-1}-\frac{\sqrt{x}-2}{x-2\sqrt{x}+1}\)
\(=\frac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)^2}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\)
\(=\frac{x+\sqrt{x}-2-\left(x-\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\)
Ta có: \(P=\left(\frac{\sqrt{x}+2}{x-1}-\frac{\sqrt{x}-2}{x-2\sqrt{x}+1}\right):\frac{4x}{\left(x-1\right)^2}\)
\(=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\cdot\frac{\left(x-1\right)^2}{4x}\)
\(=\frac{1}{2\sqrt{x}}\cdot\left(\sqrt{x}-1\right)^2\cdot\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{2\sqrt{x}}\)

a: ĐKXĐ: x>=-4
\(x^2+3x+24=12\sqrt{x+4}\)
=>\(x\left(x+3\right)-12\sqrt{x+4}+24=0\)
=>\(x\left(x+3\right)-12\left(\sqrt{x+4}-2\right)=0\)
=>\(x\left(x+3\right)-12\cdot\frac{x+4-4}{\sqrt{x+4}+2}=0\)
=>\(x\left(x+3\right)-\frac{12x}{\sqrt{x+4}+2}=0\)
=>\(x\left(x+3-\frac{12}{\sqrt{x+4}+2}\right)=0\)
=>\(x\left\lbrack x+\frac{3\sqrt{x+4}+6-12}{\sqrt{x+4}+2}\right\rbrack=0\)
=>\(x\left\lbrack x+\frac{3\sqrt{x+4}-6}{\sqrt{x+4}+2}\right\rbrack=0\)
=>\(x\cdot\left\lbrack x+\frac{3\left(\sqrt{x+4}-2\right)}{\sqrt{x+4}+2}\right\rbrack=0\)
=>\(x\cdot\left\lbrack x+3\cdot\frac{x+4-4}{\left(\sqrt{x+4}+2\right)\left(\sqrt{x+4}+2\right)}\right\rbrack=0\)
=>\(x^2\left(1+\frac{3}{\left(\sqrt{x+4}+2\right)^2}\right)=0\)
=>\(x^2=0\)
=>x=0(nhận)
b:
ĐKXĐ: x>=-5/2
\(x^2+\sqrt{2x+5}=2x+3+\sqrt{x^2+2}\)
=>\(x^2-2x-3=\sqrt{x^2+2}-\sqrt{2x+5}\)
=>\(\left(x-3\right)\left(x+1\right)=\frac{x^2+2-2x-5}{\sqrt{x^2+2}+\sqrt{2x+5}}\)
=>\(\left(x-3\right)\left(x+1\right)\left(1-\frac{1}{\sqrt{x^2+2}+\sqrt{2x+5}}\right)=0\)
=>(x-3)(x+1)=0
=>\(\left[\begin{array}{l}x=3\left(nhận\right)\\ x=-1\left(nhận\right)\end{array}\right.\)

Câu 12: Để hệ vô nghiệm thì \(\frac{m^2}{3}=\frac31<>\frac{m}{1}\)
=>\(\begin{cases}m^2=9\\ m<>3\end{cases}\Rightarrow m=-3\)
Câu 11: x+2y=1
=>x=1-2y=1+1=2
\(\frac12\cdot x_0^2-2\cdot y_0=\frac12\cdot2^2-2\cdot\frac12=2-1=1\)
Câu 10: \(\begin{cases}x+2y=5\\ x-y=-1\end{cases}\Rightarrow\begin{cases}x+2y-x+y=5+1=6\\ x+2y=5\end{cases}\)
=>\(\begin{cases}3y=6\\ x=5-2y\end{cases}\Rightarrow\begin{cases}y=2\\ x=5-2\cdot2=1\end{cases}\)
\(3\cdot x_0^{2020}+2\cdot y_0\)
\(=3\cdot1^{2020}+2\cdot2=3+4=7\)
Câu 9: Để hệ phương trình \(\begin{cases}m^2x+y=3m\\ -4x-y=6\end{cases}\) vô nghiệm thì
\(\frac{m^2}{-4}=\frac{1}{-1}<>\frac{3m}{6}\)
=>\(\begin{cases}m^2=4\\ 3m<>-6\end{cases}\Rightarrow\begin{cases}m\in\left\lbrace2;-2\right\rbrace\\ m<>-2\end{cases}\)
=>m=2
Để hệ phương trình \(\begin{cases}\left(2-a\right)x-y=-2\\ ax-y=6\end{cases}\) vô nghiệm thì \(\frac{2-a}{a}=\frac{-1}{-1}<>-\frac26\)
=>\(\frac{2-a}{a}=1\)
=>2-a=a
=>a=1

ĐKXĐ: x∉{2;-1;-2}
Ta có: \(\frac{3}{x^2-x-2}+\frac{3}{x^2+3x+2}=\frac{3}{x^2+4}\)
=>\(\frac{1}{x^2-x-2}+\frac{1}{x^2+3x+2}=\frac{1}{x^2+4}\)
=>\(\frac{1}{\left(x-2\right)\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}=\frac{1}{x^2+4}\)
=>\(\frac{x+2+x-2}{\left(x-1\right)\left(x+2\right)\left(x-2\right)}=\frac{1}{x^2+4}\)
=>\(\frac{2x}{\left(x-1\right)\left(x+2\right)\left(x-2\right)}=\frac{1}{x^2+4}\)
=>\(2x\left(x^2+4\right)=\left(x-1\right)\left(x^2-4\right)\)
=>\(2x^3+8x=x^3-4x-x^2+4\)
=>\(x^3+x^2+12x-4=0\)
=>x≃0,32(nhận)

ĐKXĐ: x∉{2;-1;-2}
Ta có: \(\frac{3}{x^2-x-2}+\frac{3}{x^2+3x+2}=\frac{3}{x^2+4}\)
=>\(\frac{1}{x^2-x-2}+\frac{1}{x^2+3x+2}=\frac{1}{x^2+4}\)
=>\(\frac{1}{\left(x-2\right)\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}=\frac{1}{x^2+4}\)
=>\(\frac{x+2+x-2}{\left(x-1\right)\left(x+2\right)\left(x-2\right)}=\frac{1}{x^2+4}\)
=>\(\frac{2x}{\left(x-1\right)\left(x+2\right)\left(x-2\right)}=\frac{1}{x^2+4}\)
=>\(2x\left(x^2+4\right)=\left(x-1\right)\left(x^2-4\right)\)
=>\(2x^3+8x=x^3-4x-x^2+4\)
=>\(x^3+x^2+12x-4=0\)
=>x≃0,32(nhận)
giải hộ mik bài 4 ạ
thân ai nấy lo đi nhé