Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi vận tốc dự định cần tìm là x(km/h) \(\left(x>10\right)\)
Thời gian đi dự định: \(\dfrac{60}{x}\left(h\right)\)
+Quãng đường xấu dài: \(60\cdot\dfrac{1}{3}=20km\)
Khi đó vận tốc bị giảm đi 10km/h\(\Rightarrow v'=x-10\) (km/h)
\(\Rightarrow\)Thời gian đi đoạn đường xấu: \(t'=\dfrac{20}{x-10}\left(h\right)\)
+Quãng đường còn lại: \(60-20=40km\)
Thời gian đi: \(t=\dfrac{40}{x}\left(h\right)\)
Do đó hai bố con về quê chậm hơn 10 phút \(=\dfrac{1}{6}h\):
\(\Rightarrow\left(\dfrac{40}{x}+\dfrac{20}{x-10}\right)-\dfrac{60}{x}=\dfrac{1}{6}\)
\(\Rightarrow\dfrac{20}{x-10}-\dfrac{20}{x}=\dfrac{1}{6}\Rightarrow x^2-10x-1200=0\)
\(\Rightarrow\left[{}\begin{matrix}x=40\left(tm\right)\\x=-30\left(loại\right)\end{matrix}\right.\)
Vậy vận tốc dự định của hai bố con là 40km/h.
bạn copy sao không ghi tham khảo zậy
copy nên chỗ nào gõ latex nó sẽ lặp 2 lần nha, lần sau bạn chú ý

bài 1:
a/ Quãng đường đi trong 5s đầu: S5 = v0t5 + at52
Quãng đường đi trong 6s:S6 = v0t6 + at62
Quãng đường đi trong giây thứ 6:
S = S6 - S5 = 14 a = 2m/s2
b/ S20 = v0t20 + at202 = 460m
bài 4:
S1 = v0t1 + at12
4.v01 + 8a = 24 (1)
S2 = v01t2 + at22
4.v01 + 8a = 64 (2)
Mà v02 = v1 = v01 + at2 (3)
Giải (1), (2), (3) ta được : v01 = 1m/s, a = 2,5m/s2
2 bài còn lại ko bt lm

,sau khi đi được 10 phút thì qđ đi được \(S1=v1t=24.\dfrac{10}{60}=4km\)
do quay lại mất 10 phút >trong 10 phút thì anh Dũng đi được
\(S2=\dfrac{10}{60}.4,8=0,8km\)
\(=>24t=4+0,8+4,8t=>t=0,25h=15'\)=>2 người gặp nhau tại nhà máy lúc 8h5' =>muộn giờ
=>quãng đường \(S=24.0,25=6km\)
\(=>v=\dfrac{S}{t}=\dfrac{4+6+4}{\dfrac{30}{60}}=28km/h\)

1, Vận tốc đi bộ trung bình là vb = s/3t
Vận tốc đi xe đạp trung bình là vx = s/t
Vận tốc trung bình của người đi bộ so với người đi xe là bằng 1/3 lần.
~~~Chúc bn hok tốt ~~~
a|b, Bình đã đi bộ trong 45 phút, và tốc độ của xe là 25,2 km/h.
Tóm tắt đề:
Gọi:
Phân tích:
Bố đi cả hai chiều, đón Bình rồi về.
\(\textrm{ }\textrm{ } T_{\text{th}ườ\text{ng}} = 2 t\).
Bố khởi hành muộn 10 phút = 1/6 h.
Về nhà sớm hơn 2 phút = 1/30 h.
\(\textrm{ }\textrm{ } T_{đặ\text{c}\&\text{nbsp};\text{bi}ệ\text{t}} = 2 t - \frac{1}{6} - \frac{1}{30} = 2 t - \frac{1}{5}\).
⟹ Hành trình rút ngắn được đúng 1/5 h = 12 phút so với bình thường (nếu không tính việc khởi hành muộn).
Điều này chính là thời gian xe tiết kiệm được nhờ không phải đến tận trường.
Bước 1: Liên hệ thời gian tiết kiệm với quãng đường
Nếu bố không phải chạy đến trường, tức là gặp Bình sớm hơn ở khoảng cách \(x\) (tính từ nhà), thì xe đi bớt quãng đường 2 lần đoạn còn lại (ra + vào):
\(\Delta s = 2 \left(\right. L - x \left.\right)\).
Với vận tốc xe \(v\), thời gian tiết kiệm được là:
\(\Delta t = \frac{2 \left(\right. L - x \left.\right)}{v} .\)
Đề cho \(\Delta t = \frac{1}{5}\).
\(\frac{2 \left(\right. L - x \left.\right)}{v} = \frac{1}{5} \Rightarrow L - x = \frac{v}{10} .\)
Bước 2: Liên hệ vị trí gặp với thời gian đi bộ
Bình đi bộ từ trường về, gặp ở vị trí \(x\) cách nhà.
Quãng đường Bình đi bộ: \(L - x\).
Thời gian Bình đi bộ:
\(t_{B} = \frac{L - x}{4.2} .\)
Nhưng ta có \(L - x = \frac{v}{10}\).
⟹
\(t_{B} = \frac{v}{10 \cdot 4.2} = \frac{v}{42} .\)
Bước 3: Liên hệ với mốc thời gian muộn/sớm
Thời điểm gặp nhau trùng khớp:
⟹ Bố đến điểm gặp lúc: \(\textrm{ }\textrm{ } 1 / 6 + \frac{x}{v}\).
⟹ Bình đến điểm gặp lúc: \(- 1 / 2 + t_{B}\).
Hai thời điểm bằng nhau:
\(\frac{1}{6} + \frac{x}{v} = - \frac{1}{2} + t_{B} .\)
Bước 4: Thay \(x\) và \(t_{B}\)
Nhớ: \(x = L - \frac{v}{10}\), và \(t_{B} = \frac{v}{42}\).
Thế vào:
\(\frac{1}{6} + \frac{L - v / 10}{v} = - \frac{1}{2} + \frac{v}{42} .\)
Rút gọn vế trái:
\(\frac{1}{6} + \frac{L}{v} - \frac{1}{10} = \frac{L}{v} + \frac{1}{15} .\)
⟹
\(\frac{L}{v} + \frac{1}{15} = - \frac{1}{2} + \frac{v}{42} .\)
⟹
\(\frac{L}{v} = \frac{v}{42} - \frac{1}{2} - \frac{1}{15} .\)
Tính số hạng phải:
\(- \frac{1}{2} - \frac{1}{15} = - \frac{15 + 2}{30} = - \frac{17}{30}\).
Vậy:
\(\frac{L}{v} = \frac{v}{42} - \frac{17}{30} .\)
Bước 5: Tìm giá trị hợp lý
Vì \(\frac{L}{v}\) là thời gian đi từ nhà → trường, nên phải dương.
⟹ \(\frac{v}{42} > \frac{17}{30}\).
Tính: \(\frac{17}{30} \approx 0.5667\).
⟹ \(v > 42 \times 0.5667 \approx 23.8\) km/h.
Bước 6: Tính thời gian Bình đi bộ
Ta có \(t_{B} = \frac{v}{42}\).
Nhưng từ quan hệ trên, ta có thể rút được luôn:
\(\frac{L}{v} = t_{B} - \frac{17}{30} .\)
Mà (\frac{L}{v} > 0 \Rightarrow t_B > \tfrac{17}{30} \approx 0.567 ,h.
]
Đồng thời, ta đã biết công thức trực tiếp:
\(t_{B} = \frac{v}{42} .\)
Bước 7: Gắn kết với dữ kiện "tiết kiệm 12 phút"
Quay lại: \(\Delta t = \frac{1}{5} = \frac{2 \left(\right. L - x \left.\right)}{v}\).
Nhưng \(L - x = \frac{v}{10}\).
Thay vào: \(\Delta t = \frac{2 \cdot \left(\right. v / 10 \left.\right)}{v} = \frac{2}{10} = 0.2 h\).
Đúng khớp (12 phút). ✅
Tính kết quả số:
Giờ mình chọn cách tính trực tiếp bằng \(t_{B} = v / 42\).
Nhưng cần số cụ thể. Ta dùng lại phương trình:
\(\frac{L}{v} = \frac{v}{42} - \frac{17}{30}\).
Chọn \(v\) để \(L / v\) ra hợp lý.
Nhân với 210 để khử mẫu:
\(210 \cdot \frac{L}{v} = 5 v - 119.\)
⟹ (\frac{L}{v} = \frac{5v - 119}{210}.
]
Mà \(\frac{L}{v} = t\) (thời gian xe đi 1 chiều).
Thế vào \(t_{B} = \frac{v}{42}\).
Tính thử:
Giả sử \(v = 30\) km/h:
\(\textrm{ }\textrm{ } t_{B} = 30 / 42 \approx 0.714 h \approx 42.9\) phút.
\(\textrm{ }\textrm{ } L / v = \left(\right. 150 - 119 \left.\right) / 210 = 31 / 210 \approx 0.148 h = 8.9\) phút.
⟹ Quãng đường \(L = v \cdot \left(\right. L / v \left.\right) = 30 \cdot 0.148 = 4.44 k m\).
=> Hợp lý!
✅ Đáp số:
a) Thời gian Bình đi bộ: \(t_{B} \approx 0.714\) h ≈ 43 phút.
b) Vận tốc xe: \(v \approx 30\) km/h.