
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


(\(\frac12\))\(^{x}\) + \(\left(\frac12\right)\)\(^{x+2}\) = \(\frac{5}{32}\)
(\(\frac12\))\(^{x}\).[1 + \(\left(\frac12\right)^2\)]= \(\frac{5}{32}\)
(\(\frac12\))\(^{x}\) .[1 + \(\frac14\)] = \(\frac{5}{32}\)
(\(\frac12\))\(^{x}\).\(\frac54\) = \(\frac{5}{32}\)
(\(\frac12\))\(^{x}\) = \(\frac{5}{32}\) : \(\frac54\)
(\(\frac12\))\(^{x}\) = \(\frac{5}{32}\) x \(\frac45\)
(\(\frac12\))\(^{x}\) = \(\frac18\)
(\(\frac12\))\(^{x}\) = \(\left(\frac12\right)^3\)
\(x=3\)
Vậy: \(x\) = 3

câu 2 Gọi số học sinh nam và nữ lần lượt là a , b (a,b>0)
vì số h/s nam và h/s nữ tỉ lệ với các số 5 và 7 nên: => a/5 = b/7
vì số học sinh nữ nhiều hơn nam là 6 nên: b-a=6
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
a/5=b/7=b-a/7-5=6/2=3
Do đó : a/5=3=>a=3x5=15(h/s)
b/7=3=>b=3x7=21(h/s)
Vậy số học sinh nam và nữ của lớp đó lần lượt là 15 h/s;21h/s

Giải:
\(x-5\sqrt{x}\) = 0 (\(x\) ≥ 0)
\(\sqrt{x}\) .(\(\sqrt{x}\) - 5) = 0
\(\left[\begin{array}{l}\sqrt{x}=0\\ \sqrt{x}-5=0\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ \sqrt{x}=5\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ x=25\end{array}\right.\)
Vậy \(x\in\) {0; 25}
\(x^5\) = 2\(x^7\)
\(x^5\) - 2\(x^7\) = 0
\(x^5\).(1 - 2\(x^2\)) = 0
\(\left[\begin{array}{l}x^5=0\\ 1-2x^2=0\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ 2x^2=1\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ x^2=\frac12\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ x=\pm\sqrt{\frac12}\end{array}\right.\)
Vậy \(x\) ∈ {- \(\sqrt{\frac12}\); 0; \(\sqrt{\frac12}\)}

Giải:
\(x-5\sqrt{x}\) = 0 (\(x\) ≥ 0)
\(\sqrt{x}\) .(\(\sqrt{x}\) - 5) = 0
\(\left[\begin{array}{l}\sqrt{x}=0\\ \sqrt{x}-5=0\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ \sqrt{x}=5\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ x=25\end{array}\right.\)
Vậy \(x\in\) {0; 25}
\(x^5\) = 2\(x^7\)
\(x^5\) - 2\(x^7\) = 0
\(x^5\).(1 - 2\(x^2\)) = 0
\(\left[\begin{array}{l}x^5=0\\ 1-2x^2=0\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ 2x^2=1\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ x^2=\frac12\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ x=-\frac{1}{\sqrt2}\\ x=\frac{1}{\sqrt2}\end{array}\right.\)
Vậy \(x\) \(\in\) {- \(\frac{1}{\sqrt2}\); 0; \(\frac{1}{\sqrt2}\)}

ta có
\(A \left(\right. x \left.\right) = - 2 x^{2} - 3 x^{6} - 0.01 = 0\)
\(- 2 x^{2} - 3 x^{6} = 0.01\)
\(- 2 x^{2} - 3 x^{6} \leq 0\) (vì \(- 2 x^{2} \leq 0\) và \(- 3 x^{6} \leq 0\))
Vế phải 0.01 > 0\(\)
Một số ko âm không thể bằng một số dương
Vậy phương trình vô nghiệm
Ta có: \(3x^6\ge0\forall x\)
\(2x^2\ge0\forall x\)
Do đó: \(3x^6+2x^2\ge0\forall x\)
=>\(-3x^6-2x^2\le0\forall x\)
=>\(A=-3x^6-2x^2-0,01\le-0,01<0\forall x\)
=>A không có nghiệm

Thời gian có hạn copy cái này hộ mình vào google xem nha :
https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 500 giải nhanh nha đã có 401 người nhận rồi
OK
\(\left(3x+1\right)\left(x-2\right)< 0.\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1>0,x-2< 0\\3x+1< 0,x-2>0\end{cases}}\)
\(Th1\hept{\begin{cases}3x+1>0\\x-2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}3x>-1\\x< 2\end{cases}\Leftrightarrow\hept{\begin{cases}x>\frac{-1}{3}\\x< 2\end{cases}\Rightarrow}}}\frac{-1}{x}< x< 2\)
\(Th2:\hept{\begin{cases}3x+1< 0\\x-2>0\end{cases}\Leftrightarrow\hept{\begin{cases}3x< -1\\x>2\end{cases}\Leftrightarrow\hept{\begin{cases}x< \frac{-1}{2}\\x>2\end{cases}\left(loại\right)}}}\)
Vậy \(\frac{-1}{x}< x< 2\)

\(\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{y}=\dfrac{3}{2}\Rightarrow x=1,5y\)
\(2x+5y=32\)
\(2\times1,5y+5y=32\)
\(3y+5y=32\)
\(\left(3+5\right)y=32\)
\(8y=32\)
\(y=32:8=4\)
⇒ \(x=4\times\dfrac{3}{2}=6\)
Vậy \(x=6\) ; \(y=4\)
2.(2\(x\) + 2)\(^2\) = 32
(2\(x\) + 2)\(^2\) = 32 : 2
(2\(x+2\))\(^2\) = 16
(2\(x+2\))\(^2\) = 4\(^2\)
2\(x\) + 2 = 4
2\(x\) = 4 - 2
2\(x\) = 2
\(x\) = 2 : 2
\(x=1\)
Vậy \(x\) = 1
\(2\cdot\left(2x+2\right)^2=32\)
=>\(\left(2x+2\right)^2=\frac{32}{2}=16\)
=>\(\left[\begin{array}{l}2x+2=4\\ 2x+2=-4\end{array}\right.\Rightarrow\left[\begin{array}{l}2x=2\\ 2x=-6\end{array}\right.\Rightarrow\left[\begin{array}{l}x=1\\ x=-3\end{array}\right.\)