
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


ta có
332×35=31120
1120/3 = 1121/3 - 1/3\(\)
Đáp số: 1120/3 = 1121/3 - 1/3\(\)

\(\frac{2^2.3^3.35}{2^4.3^2.21}=\frac{2^2.3^2.3.35}{2^2.2^2.3^2.21}=\frac{3.35}{2^2.21}=\frac{3.35}{2^2.3.7}=\frac{35}{2^2.7}=\frac{35}{28}=\frac{5}{4}\)

Ta có:
\(\frac{2^3.3^3.35}{2^4.3^2.21}=\frac{3.5}{2.3}=\frac{5}{2}\)
Vậy ...
hok tốt!!

a)Người đầu thắng.
..Lượt đầu,người đầu (A) thay 2 dấu (-)
..Người sau (B) có thể thay 1 hoặc 2 dấu (-)
..Lượt 2,A sẽ thay 2 hoặc 1 dấu (-) tùy theo lượt trước đó B thay 1 hay 2 dấu (-) (đảm bảo tổng số dấu (-) bị thay của A lượt này và B lượt ngay trước đó là 3).Đến đây chỉ còn 3 dấu (-).
..Lượt 2,B có thể thay 1 hoặc 2 dấu (-).
..Đến đây chỉ còn 2 hoặc 1 dấu (-) và đến lượt A nên A thắng.
b)A thắng nếu lượt đầu A thay 1 dấu (-).Áp dụng chiến thuật trên,sau khi A đi lượt 2 còn 3 dấu (-).Và cũng như trên, đến trước khi A đi lượt 3,chỉ còn 1 hoặc 2 dấu (-) nên A sẽ thắng.
c)B thắng.
...B sẽ áp dụng chiến thuật tương tự (trong mỗi lượt,tổng số dấu (-) bị thay đúng bằng 3).Khi B đi xong lượt 2 sẽ còn 3 dấu (-).Lượt 3,B đi sau nên sẽ thắng.
Bài giải:
a)Người đầu thắng.
..Lượt đầu,người đầu (A) thay 2 dấu (-)
..Người sau (B) có thể thay 1 hoặc 2 dấu (-)
..Lượt 2,A sẽ thay 2 hoặc 1 dấu (-) tùy theo lượt trước đó B thay 1 hay 2 dấu (-) (đảm bảo tổng số dấu (-) bị thay của A lượt này và B lượt ngay trước đó là 3).Đến đây chỉ còn 3 dấu (-).
..Lượt 2,B có thể thay 1 hoặc 2 dấu (-).
..Đến đây chỉ còn 2 hoặc 1 dấu (-) và đến lượt A nên A thắng.
b)A thắng nếu lượt đầu A thay 1 dấu (-).Áp dụng chiến thuật trên,sau khi A đi lượt 2 còn 3 dấu (-).Và cũng như trên, đến trước khi A đi lượt 3,chỉ còn 1 hoặc 2 dấu (-) nên A sẽ thắng.
c)B thắng.
...B sẽ áp dụng chiến thuật tương tự (trong mỗi lượt,tổng số dấu (-) bị thay đúng bằng 3).Khi B đi xong lượt 2 sẽ còn 3 dấu (-).Lượt 3,B đi sau nên sẽ thắng.

1) Đặt: ( n + 9 ; n - 6 ) = d với d là số tự nhiên
=> \(\hept{\begin{cases}n+9⋮d\\n-6⋮d\end{cases}}\Rightarrow\left(n+9\right)-\left(n-6\right)⋮d\Rightarrow15⋮d\)
=> d \(\in\)Ư ( 15 ) = { 1; 3; 5; 15 }
=> d có thể rút gọn cho số 3; 5; 15
2) Đặt: ( 18n + 3 ; 23n + 7 ) = d
=> \(\hept{\begin{cases}18n+3⋮d\\23n+7⋮d\end{cases}}\Rightarrow23\left(18n+3\right)-18\left(23n+7\right)⋮d\)
=> \(57⋮d\)
=> \(d\inƯ\left(57\right)=\left\{1;3;19;57\right\}\)
=> \(\frac{18n+3}{\text{23n+7}}\) rút gọn được khi d = 3; d = 19 ; d = 57
Vì rút gọn được cho 57 thì sẽ rút gọn được cho 3 và cho 19
Nên mình chỉ cần xác định n với d = 3 và d =19
+) Với d = 3
\(\hept{\begin{cases}18n+3⋮3\\23n+7⋮3\end{cases}}\Rightarrow9\left(18n+3\right)-7\left(23n+7\right)⋮3\)
=> \(n+11⋮3\)
=> \(n-1⋮3\)
=>Tồn tại số tự nhiên k sao cho: \(n=3k+1\)khi đo phân số sẽ rút gọn được cho 3
+) Với d = 19
\(\hept{\begin{cases}18n+3⋮19\\23n+7⋮19\end{cases}}\Rightarrow9\left(18n+3\right)-7\left(23n+7\right)⋮19\)
=> \(n+11⋮19\Rightarrow n-8⋮19\)
=> Tồn tại số tự nhiên k sao cho n = 19k + 8 khi đó phân số sẽ rút gọn được cho 19
Vậy n = 3k + 1 hoặc n = 19k + 8 thì phân số sẽ rút gọn được.

\(1+\frac{1}{2+\frac{1}{3}}\)
\(=1+\frac{3}{7}\)
\(=\frac{10}{7}\)
Vậy \(1+\frac{1}{2+\frac{1}{3}}=\frac{10}{7}\)
ta có
1/3 - 1/35
1/3 - 1/35 = 35 - 3 / 105 = 32/105\(\)
mà 32/105 = 32/3.35\(\)
Vậy: 32/105 = 32/3.35
\(\frac{32}{3\cdot35}\)
\(=\frac{35-3}{3\cdot35}\)
\(=\frac{35}{3\cdot35}-\frac{3}{3\cdot35}\)
\(=\frac13-\frac{1}{35}\)