Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: a) \(M=1+5+5^2+...+5^{100}\)
\(5M=5+5^2+5^3+...+5^{101}\)
\(5M-M=\left(5+5^2+5^3+...+5^{101}\right)-\left(1+5+5^2+...+5^{100}\right)\)
\(4M=5^{101}-1\)
\(M=\frac{5^{101}-1}{4}\)
b) \(N=2+2^2+...+2^{100}\)
\(2N=2^2+2^3+...+2^{101}\)
\(2N-N=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)
\(N=2^{101}-2\)
Bài 2:
a) \(16^{32}=\left(2^4\right)^{32}=2^{128}\)
\(32^{16}=\left(2^5\right)^{16}=2^{80}\)
Vì \(2^{128}>2^{80}\Rightarrow16^{32}>32^{16}\)

b)\(3.4^2-2.3=3.\left(4^2-3\right)\)
\(=3.13\)
\(=39\)
Học tốt nha!!!

BÀI 1 dễ òi nên k giải nữa nha, chỉ cần ghép các số ( 1;2;3 ) số đầu, liên tiếp dần là đc nha bạn.
Bài 2:
\(8^4\cdot16^5=\left(2^3\right)^4\cdot\left(2^4\right)^5=2^{12}\cdot2^{20}=2^{32}\)
\(5^{40}\cdot125^7\cdot625^3=5^{40}\cdot\left(5^3\right)^7\cdot\left(5^4\right)^3=5^{40}\cdot5^{21}\cdot5^{12}=5^{73}\)
\(27^4\cdot81^{10}=\left(3^3\right)^4\cdot\left(3^4\right)^{10}=3^{12}\cdot3^{40}=3^{52}\)
\(10^3\cdot100^5\cdot1000^4=10^3\cdot\left(10^2\right)^5\cdot\left(10^3\right)^4=10^3\cdot10^{10}\cdot10^{12}=10^{25}\)
Đề bài sai
đề bài sai rồi nha cậu ơi!