
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


b, A = 3+3^2 +3^3 +3^4 +....+3^120 =﴾3+3^2+3^3﴿+......+﴾3^118+3^119+3^120﴿ =3﴾1+3+3^2﴿+....+3^118﴾1+3+3^2﴿ = 3.13+...+3^118. 13 = 13﴾ 3+...+3^118﴿ chia hết cho 13 c, A = 3+3^2 +3^3 + 3^4 +....+3^120 = ﴾3+3^2+3^3+3^4﴿+.....+﴾3^117+3^118+3^119+3^120﴿ = 3﴾1+3+3^2+3^3﴿ +...+3^117﴾ 1+3+3^2 +3^3﴿ = 3.40+ ...+3^117 .40 = 40 .﴾ 3+....+3^117﴿ chia hết cho 40
b, A = 3+3^2 +3^3 +3^4 +....+3^120
=(3+3^2+3^3)+......+(3^118+3^119+3^120)
=3(1+3+3^2)+....+3^118(1+3+3^2)
= 3.13+...+3^118. 13
= 13( 3+...+3^118) chia hết cho 13
c, A = 3+3^2 +3^3 + 3^4 +....+3^120
= (3+3^2+3^3+3^4)+.....+(3^117+3^118+3^119+3^120)
= 3(1+3+3^2+3^3) +...+3^117( 1+3+3^2 +3^3)
= 3.40+ ...+3^117 .40
= 40 .( 3+....+3^117) chia hết cho 40

1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!

\(A,\)\(S=\left(3+3^2\right)+\left(3+3^2\right)3^2+...+\left(3+3^2\right)3^{2018} \)
\(\Rightarrow S=9\left(1+3^2+...+3^{2018}\right)\)
\(\Rightarrow S⋮9\)
\(B,\)\(S=3+3^2+3^3+\left(3+3^2+3^3\right)3^3+...\left(3+3^2+3^3\right)3^{2017}\)
\(S=39+39.3^3+...+39.3^{2017}\)
Nhưng xét lại thì thấy 2017 không chia hết cho 3 nên câu b có lẽ sai đề =)))))
\(C,\)\(S=\left(1+3+3^2+3^3\right).3+\left(1+3+3^2+3^3\right).3^4+...+\left(1+3+3^2+3^3\right).3^{2017}\)
\(S=40.3+40.3^4+...+40.3^{2017}\)
\(Vậy...\)

Bài 1 : \(A=1+3+3^2+...+3^{31}\)
a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)
\(\Rightarrow A=13+3^9.13\)
\(\Rightarrow A=13.\left(1+...+3^9\right)\)
\(\Rightarrow A⋮13\)
b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=40+...+3^8.40\)
\(\Rightarrow A=40.\left(1+...+3^8\right)\)
\(\Rightarrow A⋮40\)
Bài 2:
Ta có: \(C=3+3^2+3^4+...+3^{100}\)
\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)
\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)
\(\Rightarrow3.40+...+3^{97}.40\)
Vì tất cả các số hạng của biểu thức C đều chia hết cho 40
\(\Rightarrow C⋮40\)
Vậy \(C⋮40\)

a, Ta có:
\(3^{2n+1}+2^{n+2}=9^n.3+2^n.4\)
\(=9^n.3-2^n.3+2^n.7=3\left(9^n-2^n\right)+2^n.7\)
Ta lại có:
\(9^n-2^n⋮9-2=7;2n.7⋮7\)
\(\Rightarrow3^{2n+1}+2^{n+2}⋮7\left(dpcm\right)\)

lg
a)C=3+3^2+3^3+...+3^100
=(3+3^2+3^3+3^4)+...+(3^96+3^97+3^98+3^99+3^100)
=(3.1+3.3+3.3^2+3.3^3)+...+(3^96.1+3^96.3+3^96.3^2+3^96.3^3)
=3.(1+3+3^2+3^3)+...+3^96.(1+3+3^2+3^3)
=3.40+...+3^96.40
=40.(3+...+3^96) chia hết cho 40
=>C chia hết cho 40
Vậy C chia hết cho 40
phần b làm tương tự
a, sai đề
b,Ta có :
C=2+2^2+2^3+2^4+2^5...+2^96+2^97+2^98+2^99+2^100
= (2+2^2+2^3+2^4+2^5)+...+(2^96+2^97+2^98+2^99+2^100)
= (2.1+2.2+2.2^2+2.2^3+2.2^4)+...+(2^96.1+2^96.2+2^96.2^2+2^96.2^3+2^96.2^4)
=2. (1+2+2^2+2^3+2^4) +...+2^96.(1+2+2^2+2^3+2^4)
=2.31+...+2^96.31
=31. (2+...+2^96) chia hết cho 31
=>C chia hết cho 31


Ta có : \(A=5+5^2+5^3+...+5^{48}\)
\(=\left(5+5^2+5^3\right)+...+\left(5^{46}+5^{47}+5^{48}\right)\)
\(=5\cdot\left(1+5+5^2\right)+...+5^{46}\cdot\left(1+5+5^2\right)\)
\(=5\cdot31+...+5^{46}\cdot31\)
\(=31\cdot\left(5+...+5^{46}\right)\) chia hết cho 31
lại có : \(A=5+5^2+5^3+5^4+...+5^{48}\)
\(=\left(5+5^2+5^3+5^4\right)+...+\left(5^{45}+5^{46}+5^{47}+5^{48}\right)\)
\(=5\cdot\left(1+5+5^2+5^3\right)+...+5^{45}\cdot\left(1+5+5^2+5^3\right)\)
\(=5\cdot156+...+5^{45}\cdot156\)
\(=156\cdot\left(5+..+5^{45}\right)\) chia hết cho 156
Ta thấy : A chia hết cho 31
A chia hết cho 156 => A chia hết cho 156 . 31
=> A chia hết cho 4836 ( đpcm)

a,: S chia hết cho 12 S=(3+3^2 )+(3^3+3^4)+...+(3^1997+3^1998) S=3.(3+3^2)+3^3.(3+3^2)+...+3^1997.(3+3^2) S=3.12+3^3.12+...+3^1997.12 S=12.(3+3^2+3^3+...+3^1998)
comment cách làm cho mình với ; http:ngocrongonline.com vào giải trí tý !! :>
A=(3+32)+(33+34)+...+(347+348)
A=3(1+3)+33(1+3)+...+347(1+3)
A=3×4+33×4+...+347×4
A=4×(3+33+...+347) Vì 4×(3+33+...+347) chia hết cho 4 và A có thừa số 3 nên A chia hết cho 3. Do đó A chia hết cho 3×4=12.
A=(3+32+33)+(34+35+36)+...+(346+347+348) A=3(1+3+32)+34(1+3+32)+...+346(1+3+32) A=3×13+34×13+...+346×13
A=13×(3+34+...+346)
Vì 13×(3+34+...+346) chia hết cho 13 và A có thừa số 3 nên A chia hết cho 3×13=39