\(x^{3} - 7 x + 6\) thành nhân tử.

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8

Từ điểm B, C vẽ các đường thẳng lần lượt đi qua AC và AB và cắt AC tại D, AB tại E. Sao cho BE = DC.

Xét tam giác BEC và tam giác DCB có:

BE = DC ( chứng minh trên )

ˆB=ˆC( giả thiết )

Cạnh BC chung

=> Tam giác BEC = tam giác DCB ( c.g.c )

Vậy nếu ˆB=ˆCthì AB = AC ( đpcm )

16 tháng 8

 x³ -7x +6 
= x³ -x²+x²-x-6x+6 
= x²(x-1)+x(x-1)-6(x-1) 
= (x-1)(x² +x-6) 
= (x-1)(x²-2x+3x-6) 
=(x-1)(x-2)(x+3) 

21 tháng 10 2016

Vì mình mới họ định lí mới nên minhfm uốn làm thử nếu cậu không hiểu tì hỏi mình để mình làm cách bình thường .

a ) Áp dụng định lí Bezout :
Đặt \(f\left(x\right)=x^3-7x-6,\) ta thấy \(f\left(-1\right)=0\) nên \(-1\) là một ước của \(f\left(x\right)\).

Vậy \(f\left(x\right)\) chia hết cho \(\left(x+1\right)\). Ta có : \(f\left(x\right)=\left(x+1\right)\left(x^2-x-6\right)\)

\(x^2-x-6=\left(x+2\right)\left(x-3\right)\).

Kết quả \(f\left(x\right)=\left(x+1\right)\left(x+2\right)\left(x-3\right)\)

b ) Áp dụng định lí Bezout :

Đặt \(f\left(x\right)=x^3-19x-30.\)Xét một số ước của 30 , ta được \(f\left(-2\right)=0\).

Ta chia \(f\left(x\right)\) cho \(\left(x+2\right);f\left(x\right)=\left(x+2\right)\left(x^2-2x-15\right)\)

\(x^2-2x-15\) nhận \(x=5\) làm nghiệm .

Do vậy \(f\left(x\right)=\left(x+2\right)\left(x+3\right)\left(x-5\right)\)

Chúc bạn học tốt ok

22 tháng 9 2018

\(x^3-5x^2-14x\)

\(=x^3+2x^2-7x^2-14x\)

\(=x^2\left(x+2\right)-7x\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-7x\right)\)

\(=x\left(x+2\right)\left(x-7\right)\)

\(x^3-7x-6\)

\(=x^3+x^2-x^2-x-6x-6\)

\(=x^2\left(x+1\right)-x\left(x+1\right)-6\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x-6\right)\)

\(=\left(x+1\right)\left(x^2+2x-3x-6\right)\)

\(=\left(x+1\right)\left[x\left(x+2\right)-3\left(x+2\right)\right]\)

\(=\left(x+1\right)\left(x+2\right)\left(x-3\right)\)

\(x^3-19x-30\)

\(=x^3-5x^2+5x^2-25x+6x-30\)

\(=x^2\left(x-5\right)+5x\left(x-5\right)+6\left(x-5\right)\)

\(=\left(x-5\right)\left(x^2+5x+6\right)\)

\(=\left(x-5\right)\left(x^2+2x+3x+6\right)\)

\(=\left(x-5\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)

\(=\left(x-5\right)\left(x+3\right)\left(x+2\right)\)

2 tháng 6 2017

\(x^3-x=x.\left(x^2-1\right)=x.\left(x^2-1^2\right)=x.\left[\left(x-1\right)\left(x+1\right)\right]=x.\left(x-1\right)\left(x+1\right)\)

Vì (x - 1) ; x ; (x + 1) là 3 số nguyên liên tiếp 

Nên luôn tồn tại một số chia hết cho 3 trong 3 số bất kỳ này 

Mặt khác , cũng có số chia hết cho 2 vì :

Thử xét x lẻ thì :

+ (x - 1) là dương , x là lẻ => (x - 1).x chẵn

+ (x + 1) là dương , x là lẻ => (x + 1).x chẵn 

Ta cũng xét vậy với x chẵn

Từ các ý trên , ta có :

\(\left(x-1\right).x.\left(x+1\right)⋮3\)

\(\left(x-1\right).x.\left(x+1\right)⋮2\)

\(\Rightarrow\left(x-1\right).x.\left(x+1\right)⋮6\) (điều cần chứng minh)

2 tháng 6 2017

\(x3-x=x\left(x^2-1\right)\)=\(x\left(x-1\right)\left(x+1\right)\)là tích của 3 số nguyên liên tiếp nên chia hết cho 2,3 suy ra chia hết cho 6 (dpcm)

6 tháng 11 2016

Ta có:

\(x^9-x^7-x^6-x^5+x^4+x^3+x^2-1\)

\(=\left(x^9-x^8\right)+\left(x^8-x^7\right)-\left(x^6-x^5\right)-\left(2x^5-2x^4\right)-\left(x^4-x^3\right)+\left(x^2-x\right)+\left(x-1\right) \)

\(=x^8.\left(x-1\right)+x^7.\left(x-1\right)-x^5.\left(x-1\right)-2x^4.\left(x-1\right)-x^3\left(x-1\right)+x\left(x-1\right)+\left(x-1\right)\)

\(=\left(x-1\right)\left(x^8+x^7-x^5-2x^4-x^3+x+1\right)\)

4 tháng 10 2018

xin chào làm ơn đừng trách mk mk sẽ nói cách giải

2 tháng 12 2016

a ) \(x^3-7x-6=x^3-x-6x-6=x^3-x-6\left(x+1\right)\)

\(=x\left(x^2-1\right)-6\left(x+1\right)=\left(x+1\right)\left[x\left(x-1\right)-6\right]\)

\(=\left(x+1\right)\left[\left(x^2-x-6\right)\right]=\left(x+1\right)\left[\left(x^2+2x-3x-6\right)\right]\)

\(=\left(x+1\right)\left[x\left(x+2\right)-3\left(x+2\right)\right]=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

b )

\(x^3-19x-30=\left(x^3-9x\right)-\left(10x+30\right)=x\left(x^2-9\right)-10\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2-3x-10\right)=\left(x+2\right)\left(x+3\right)\left(x-5\right)\)

c )

\(a^3-6a^2+11a-6=\left(a-3\right)\left(a-2\right)\left(a-1\right).\)