
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\frac{a}{b}\) = \(\frac{c}{d}\)
\(\frac{a}{c}\) = \(\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}\) = \(\frac{b}{d}\) = \(\frac{a+b}{c+d}\)
(\(\frac{a}{c}\))\(^2\) = (\(\frac{b}{d}\))\(^2\) = (\(\frac{a+b}{c+d}\))\(^2\)
\(\frac{a^2}{c^2}\) = \(\frac{b^2}{d^2}\) = \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^2+b^2}{c^2+d^2}\) = (\(\frac{a+b}{c+d}\))\(^2\) (đpcm)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=>a=bk; c=dk
\(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{bk+b}{dk+d}\right)^2=\left(\frac{b\left(k+1\right)}{d\left(k+1\right)}\right)^2=\left(\frac{b}{d}\right)^2\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)
Do đó: \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
\(\Leftrightarrow\left(a^2+b^2\right)cd=\left(c^2+d^2\right)ab\)
\(\Leftrightarrow a^2cd-c^2ab-d^2ab+b^2cd=0\)
\(\Leftrightarrow ac\left(ad-bc\right)-bd\left(ad-bc\right)=0\)
\(\Leftrightarrow\left(ac-bd\right)\left(ad-bc\right)=0\)
\(\Leftrightarrow\begin{cases}ac=bd\\ad=bc\end{cases}\)
\(\Leftrightarrow\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}\)

\(x^2+4y^2+9\ge2xy+3y+6y\)
\(\Leftrightarrow x^2+4y^2+9-2xy-3x-6y\ge0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+3y^2-6y-3x-9\ge0\)
\(\Leftrightarrow\left(x-y\right)^2-3x+3y-3y-6y+3y^2+9\ge0\)
\(\Leftrightarrow\left(x-y\right)^2-3\left(x-y\right)-9y+3y^2+9\ge0\)
\(\Leftrightarrow\left(x-y\right)^2-3\left(x-y\right)+3\left(y^2-3y+\frac{9}{4}\right)-\frac{9}{4}.3+9\ge0\)
\(\Leftrightarrow\left(x-y\right)^2-3\left(x-y\right)+3\left(y-\frac{3}{2}\right)^2+\frac{9}{4}\ge0\)
\(\Leftrightarrow\left(x-y\right)^2-3\left(x-y\right)+\frac{9}{4}+3\left(y-\frac{3}{2}\right)^2\ge0\)
\(\Leftrightarrow\left(x-y-\frac{3}{2}\right)^2+3\left(y-\frac{3}{2}\right)^2\ge0\)
Ta có:
\(\left(x-y-\frac{3}{2}\right)^2\ge0\) \(\forall x,y\)
\(3\left(y-\frac{3}{2}\right)^2\ge0\) \(\forall y\)
\(\Rightarrow\left(x-y-\frac{3}{2}\right)^2+3\left(y-\frac{3}{2}\right)^2\ge0\) \(\forall x,y\)
Dấu = khi i\(y=\frac{3}{2}\)
\(x=\frac{3}{2}+\frac{3}{2}=3\)
b)Sửa đề: Chứng minh \(a^4+b^4+c^4+d^4\ge4abcd\)
Ta chứng minh bài toán phụ: \(a^2+b^2\ge2ab\Leftrightarrow a^2+b^2-2ab\ge0\)
\(\Leftrightarrow\left(a^2-ab\right)-\left(ab-b^2\right)\ge0\) (lớp 7 chưa học hằng đẳng thức nên mình mới làm thế này thôi)
\(\Leftrightarrow a\left(a-b\right)-b\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\left(\text{BĐT đúng}\right)\Rightarrow\text{Q.E.D }\) (chỗ khúc này sửa a.b thành x,y nhé,đánh nhầm,lười đánh lại)
Áp dụng vào,ta có: \(\text{Vế trái}=\left(a^4+b^4\right)+\left(c^4+d^4\right)\ge2a^2b^2+2b^2c^2\)
\(=\left(\sqrt{2a^2b^2}\right)^2+\left(\sqrt{2b^2c^2}\right)^2\ge2\sqrt{2a^2b^2.2b^2c^2}=4abcd\) (đpcm)

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=t\) \(\Rightarrow a=bt\);\(c=dt\)
rồi bạn thế vào điều phải chứng minh là ra

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Suy ra:
+ \(\dfrac{ab}{cd}=\dfrac{bkb}{dkd}=\dfrac{kb^2}{kd^2}=\dfrac{b^2}{d^2}\)
+ \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b^2}{d^2}\)
=> đpcm

Bài 2: a)
Ta có: 2x=3y (=) \(\frac{x}{3}\)=\(\frac{y}{2}\) (=) \(\frac{x}{21}\)=\(\frac{y}{14}\)
5y=7z (=) \(\frac{z}{5}\)=\(\frac{y}{7}\) (=) \(\frac{z}{10}\)=\(\frac{y}{14}\)
Suy ra \(\frac{x}{21}\)=\(\frac{y}{14}\)=\(\frac{z}{10}\)
ta có \(\frac{x}{21}\)=\(\frac{3x}{63}\)
\(\frac{y}{14}\)= \(\frac{7y}{98}\)
\(\frac{z}{10}\)=\(\frac{5z}{50}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{3x}{63}\)=\(\frac{7y}{98}\)=\(\frac{5z}{50}\)=\(\frac{3x-7y+5z}{63-98+50}\)=\(\frac{30}{15}\)=2
=) \(\frac{3x}{63}\)=2 (=) 3x=126 (=) x=42
\(\frac{7y}{98}\)=2 (=) 7y=196 (=) y=28
\(\frac{5z}{50}\)=2 (=) 5z=100 (=) z=20
Vậy x=42 ; y=28 ; z=20

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
a, Ta có:\(\frac{a-b}{a+b}=\frac{bk-b}{bk+b}=\frac{b.\left(k-1\right)}{b.\left(k+1\right)}=\frac{k-1}{k+1}\left(1\right)\)
Lại có \(\frac{c-d}{c+d}=\frac{dk-d}{dk+d}=\frac{d.\left(k-1\right)}{d.\left(k+1\right)}=\frac{k-1}{k+1}\left(2\right)\)
Từ (1) và (2) => ĐPCM
b, Ta có \(\frac{a.b}{c.d}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\left(1\right)\)
Lại có \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) => ĐPCM
Có \(\frac{a}{b} = \frac{c}{d} = \frac{a}{c} = \frac{b}{d}\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{c} = \frac{b}{d} = \frac{a + b}{c + d}\)
\(= \left(\left(\right. \frac{a}{c} \left.\right)\right)^{2} = \left(\left(\right. \frac{b}{d} \left.\right)\right)^{2} = \left(\left(\right. \frac{a + b}{c + d} \left.\right)\right)^{2}\)
\(= \frac{a^{2}}{c^{2}} = \frac{b^{2}}{d^{2}} = \left(\left(\right. \frac{a + b}{c + d} \left.\right)\right)^{2}\)
Có \(\frac{a^{2}}{c^{2}} = \frac{b^{2}}{d^{2}}\)
Theo dãy tính chất tỉ số bằng nhau ta có :
\(\frac{a^{2}}{c^{2}} = \frac{b^{2}}{d^{2}} = \frac{a^{2} + b^{2}}{c^{2} + d^{2}}\)
Từ (1) và (2) = \(\left(\left(\right. \frac{a + b}{c + d} \left.\right)\right)^{2} = \frac{a^{2} + b^{2}}{c^{2} + d^{2}}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=>a=bk; c=dk
\(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{bk+b}{dk+d}\right)^2=\left(\frac{b\left(k+1\right)}{d\left(k+1\right)}\right)^2=\left(\frac{b}{d}\right)^2\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)
Do đó: \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)