
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: \(x^2+8x+16=x^2+2\cdot x\cdot4+4^2=\left(x+4\right)^2\)
b: \(9x^2-24x+16=\left(3x\right)^2-2\cdot3x\cdot4+4^2=\left(3x-4\right)^2\)
c: \(x^2-3x+\frac94=x^2-2\cdot x\cdot\frac32+\left(\frac32\right)^2=\left(x-\frac32\right)^2\)
d: \(4x^2y^4-4xy^3+y^2\)
\(=\left(2xy^2\right)^2-2\cdot2xy^2\cdot y+y^2\)
\(=\left(2xy^2-y\right)^2\)
e: \(\left(x-2y\right)^2-4\left(x-2y\right)+4\)
\(=\left(x-2y\right)^2-2\cdot\left(x-2y\right)\cdot2+2^2\)
\(=\left(x-2y-2\right)^2\)
f: \(\left(x+3y\right)^2-12xy\)
\(=x^2+6xy+9y^2-12xy\)
\(=x^2-6xy+9y^2=\left(x-3y\right)^2\)

a: Xét tứ giác ABEC có
M là trung điểm chung của AE và BC
=>ABEC là hình bình hành
b: Xét ΔBHF vuông tại H và ΔBHA vuông tại H có
BH chung
HF=HA
Do đó: ΔBHF=ΔBHA
=>BF=BA
mà BA=CE
nên BF=CE

Bài 8:
\(\left(2n+3\right)^2-\left(2n-1\right)^2\)
\(=\left(2n+3+2n-1\right)\left(2n+3-2n+1\right)\)
\(=4\cdot\left(4n+2\right)=4\cdot2\cdot\left(2n+1\right)=8\left(2n+1\right)\) ⋮8
Bai 7:
\(B=x^2+y^2=\left(x+y\right)^2-2xy\)
\(=15^2-2\cdot\left(-100\right)=225+200=425\)
Bài 6:
\(B=\left(3x-1\right)^2-\left(x+7\right)^2-2\left(2x-5\right)\left(2x+5\right)\)
\(=9x^2-6x+1-\left(x^2+14x+49\right)-2\left(4x^2-25\right)\)
\(=9x^2-6x+1-x^2-14x-49-8x^2+50\)
=-20x+2
Khi x=1/5 thì \(B=-20\cdot\frac15+2=-4+2=-2\)
Bài 3:
a: \(x^2-10x+25=\left(x-5\right)^2\)
b: \(4-4x^2+x^4=\left(2-x^2\right)^2\)
c: \(x^2-6xy+9y^2=\left(x-3y\right)^2\)
d: \(\left(2x+y^2\right)\left(2x-y^2\right)=4x^2-y^4\)

Bài 13:
a: \(\left\lbrack5\left(x-2y\right)^3\right\rbrack:\left(5x-10y\right)\)
\(=\frac{5\left(x-2y\right)^3}{5\cdot\left(x-2y\right)}\)
\(=\left(x-2y\right)^2\)
b: \(\left\lbrack5\left(a-b\right)^3+2\left(a-b\right)^2\right\rbrack:\left(b-a\right)^2\)
\(=\frac{5\left(a-b\right)^3+2\left(a-b\right)^2}{\left(a-b\right)^2}\)
\(=\frac{5\left(a-b\right)^3}{\left(a-b\right)^2}+\frac{2\left(a-b\right)^2}{\left(a-b\right)^2}\)
=5(a-b)+2
c: Sửa đề: \(\left(x^3+8y^3\right):\left(x+2y\right)\)
\(=\frac{\left(x+2y\right)\left(x^2-2xy+4y^2\right)}{x+2y}\)
\(=x^2-2xy+4y^2\)
Bài 11:
a: Gọi ba số tự nhiên liên tiếp lần lượt là a;a+1;a+2
Tích của hai số sau lớn hơn tích của hai số đầu là 52 nên ta có:
\(\left(a+1\right)\left(a+2\right)-a\left(a+1\right)=52\)
=>\(\left(a+1\right)\left(a+2-a\right)=52\)
=>2(a+1)=52
=>a+1=26
=>a=25
Vậy: ba số tự nhiên liên tiếp cần tìm là 25;25+1=26; 25+2=27
b: a chia 5 dư 1 nên a=5x+1
b chia 5 dư 4 nên b=5y+4
ab+1
\(=\left(5x+1\right)\left(5y+4\right)+1\)
=25xy+20x+5y+4+1
=25xy+20x+5y+5
=5(5xy+4x+y+1)⋮5
c: \(Q=2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
=6n⋮6
Bài 8:
a: \(A=x^2+2xy-3x^3+2y^3+3x^3-y^3\)
\(=x^2+2xy-3x^3+3x^3+2y^3-y^3\)
\(=x^2+2xy+y^3\)
Khi x=5;y=4 thì \(A=5^2+2\cdot5\cdot4+4^3=25+40+64=129\)
b: x=-1;y=-1
=>xy=1
\(x^2y^2=\left(xy\right)^2=1^2=1;x^4y^4=\left(xy\right)^4=1^4=1\) ; \(x^6y^6=\left(xy\right)^6=1^6=1;x^8y^8=\left(xy\right)^8=1^8=1\)
=>B=1-1+1-1+1=1

a: Xét tứ giác AEDF có \(\hat{AED}=\hat{AFD}=\hat{FAE}=90^0\)
nên AEDF là hình chữ nhật
b: AEDF là hình chữ nhật
=>DF//AE và DF=AE
DF//AE
=>GF//AE
Ta có DF=AE
DF=FG
Do đó: GF=AE
Xét tứ giác AEFG có
AE//FG
AE=FG
Do đó: AEFG là hình bình hành
c: AEDF là hình chữ nhật
=>AD cắt EF tại trung điểm của mỗi đường
mà H là trung điểm của AD
nên H là trung điểm của FE
AEDF là hình chữ nhật
=>AD=FE
mà \(HA=HD=\frac{AD}{2};HF=HE=\frac{EF}{2}\)
nên \(HA=HD=HF=HE=\frac{EF}{2}=\frac{AD}{2}\)
HI=HF
\(HF=HA\)
\(HA=\frac{AD}{2}\)
Do đó: \(IH=\frac{AD}{2}\)
Xét ΔIAD có
IH là đường trung tuyến
\(IH=\frac{AD}{2}\)
Do đó: ΔIAD vuông tại I
=>IA⊥ID

a) Số tiền Linh dùng mua bút bi:
50000 - 20000 = 30000 (đồng)
Giá tiền mỗi bút chì sau khi giảm:
x - 1000 (đồng)
Phân thức biểu thị số bút chì Linh mua được:
Phân thức biểu thị số bút bi Linh mua được:
b) Với x = 3000, số bút bi Linh mua được:
30000 : 3000 = 10 (bút)

Bài 1:
a: \(A=x^2-4x+9\)
\(=x^2-4x+4+5\)
\(=\left(x-2\right)^2+5\ge5\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
b: \(B=x^2-x+1\)
\(=x^2-2\cdot x\cdot\frac12+\frac14+\frac34\)
\(=\left(x-\frac12\right)^2+\frac34\ge\frac34\forall x\)
Dấu '=' xảy ra khi \(x-\frac12=0\)
=>\(x=\frac12\)
Bài 2:
a: \(M=4x-x^2+3\)
\(=-\left(x^2-4x-3\right)\)
\(=-\left(x^2-4x+4-7\right)\)
\(=-\left(x-2\right)^2+7\le7\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
b: \(P=2x-2x^2-5\)
\(=-2\cdot\left(x^2-x+\frac52\right)\)
\(=-2\left(x^2-x+\frac14+\frac94\right)\)
\(=-2\left(x-\frac12\right)^2-\frac92\le-\frac92\forall x\)
Dấu '=' xảy ra khi \(x-\frac12=0\)
=>\(x=\frac12\)
Bài 3:
a: \(A=x^2-4x+24\)
\(=x^2-4x+4+20\)
\(=\left(x-2\right)^2+20\ge20\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
b: \(B=2x^2-8x+1\)
\(=2\left(x^2-4x+\frac12\right)\)
\(=2\left(x^2-4x+4-\frac72\right)\)
\(=2\left(x-2\right)^2-7\ge-7\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
c: \(C=3x^2+x-1\)
\(=3\left(x^2+\frac13x-\frac13\right)\)
\(=3\left(x^2+2\cdot x\cdot\frac16+\frac{1}{36}-\frac{13}{36}\right)\)
\(=3\left(x+\frac16\right)^2-\frac{13}{12}\ge-\frac{13}{12}\forall x\)
Dấu '=' xảy ra khi \(x+\frac16=0\)
=>\(x=-\frac16\)
Bài 4:
a: \(A=-5x^2-4x+1\)
\(=-5\left(x^2+\frac45x-\frac15\right)\)
\(=-5\left(x^2+2\cdot x\cdot\frac25+\frac{4}{25}-\frac{9}{25}\right)\)
\(=-5\left(x+\frac25\right)^2+\frac95\le\frac95\forall x\)
Dấu '=' xảy ra khi \(x+\frac25=0\)
=>\(x=-\frac25\)
b: \(B=-3x^2+x+1\)
\(=-3\left(x^2-\frac13x-\frac13\right)\)
\(=-3\left(x^2-2\cdot x\cdot\frac16+\frac{1}{36}-\frac{13}{36}\right)\)
\(=-3\left(x-\frac16\right)^2+\frac{13}{12}\le\frac{13}{12}\forall x\)
Dấu '=' xảy ra khi \(x-\frac16=0\)
=>\(x=\frac16\)

\(E=\frac23x^2-\frac54x+1\)
\(=\frac23\left(x^2-\frac{15}{8}x+\frac32\right)\)
\(=\frac23\left(x^2-2\cdot x\cdot\frac{15}{16}+\frac{225}{256}+\frac{159}{156}\right)\)
\(=\frac23\left(x-\frac{15}{16}\right)^2+\frac{53}{128}\ge\frac{53}{128}\forall x\)
Dấu '=' xảy ra khi \(x-\frac{15}{16}=0\)
=>\(x=\frac{15}{16}\)
\(K=-\frac54x^2-2x-1\)
\(=-\frac54\left(x^2+\frac85x+\frac45\right)\)
\(=-\frac54\left(x^2+2\cdot x\cdot\frac45+\frac{16}{25}+\frac{4}{25}\right)\)
\(=-\frac54\left(x+\frac45\right)^2-\frac15\le-\frac15\forall x\)
Dấu '=' xảy ra khi \(x+\frac45=0\)
=>\(x=-\frac45\)
Bài 7:
a: xét tứ giác ABCP có
O là trung điểm chung của AC và BP
=>ABCP là hình bình hành
b: ABCP là hình bình hành
=>BA//CP và BA=CP
Ta có: BA//CP
=>BA//CK
ta có: BA=CP
CP=CK
Do đó: BA=CK
Xét tứ giác ABKC có
AB//KC
AB=KC
Do đó: ABKC là hình bình hành
=>BK=AC
c: Xét ΔABC có
O là trung điểm của CA
OM//AB
Do đó: M là trung điểm của BC
ABKC là hình bình hành
=>AK cắt BC tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của AK
=>A,M,K thẳng hàng
Bài 6:
a: Xét tứ giác ABKC có
M là trung điểm chung của AK và BC
=>ABKC là hình bình hành
b: Xét tứ giác AHCI có
E là trung điểm chung của AC và HI
=>AHCI là hình bình hành
c: ABKC là hình bình hành
=>CK//AB
Ta có: AHCI là hình bình hành
=>CH//AI
mà I∈AB
nên CH//AB
Ta có: CK//AB
CH//AB
mà HC,KC có điểm chung là C
nên C,H,K thẳng hàng
:(}