K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 7:

a: xét tứ giác ABCP có

O là trung điểm chung của AC và BP

=>ABCP là hình bình hành

b: ABCP là hình bình hành

=>BA//CP và BA=CP

Ta có: BA//CP

=>BA//CK

ta có: BA=CP

CP=CK

Do đó: BA=CK

Xét tứ giác ABKC có

AB//KC

AB=KC

Do đó: ABKC là hình bình hành

=>BK=AC

c: Xét ΔABC có

O là trung điểm của CA

OM//AB

Do đó: M là trung điểm của BC

ABKC là hình bình hành

=>AK cắt BC tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của AK

=>A,M,K thẳng hàng

Bài 6:

a: Xét tứ giác ABKC có

M là trung điểm chung của AK và BC

=>ABKC là hình bình hành

b: Xét tứ giác AHCI có

E là trung điểm chung của AC và HI

=>AHCI là hình bình hành

c: ABKC là hình bình hành

=>CK//AB

Ta có: AHCI là hình bình hành

=>CH//AI

mà I∈AB

nên CH//AB

Ta có: CK//AB

CH//AB

mà HC,KC có điểm chung là C

nên C,H,K thẳng hàng

9 tháng 8

:(}



a: \(x^2+8x+16=x^2+2\cdot x\cdot4+4^2=\left(x+4\right)^2\)

b: \(9x^2-24x+16=\left(3x\right)^2-2\cdot3x\cdot4+4^2=\left(3x-4\right)^2\)

c: \(x^2-3x+\frac94=x^2-2\cdot x\cdot\frac32+\left(\frac32\right)^2=\left(x-\frac32\right)^2\)

d: \(4x^2y^4-4xy^3+y^2\)

\(=\left(2xy^2\right)^2-2\cdot2xy^2\cdot y+y^2\)

\(=\left(2xy^2-y\right)^2\)

e: \(\left(x-2y\right)^2-4\left(x-2y\right)+4\)

\(=\left(x-2y\right)^2-2\cdot\left(x-2y\right)\cdot2+2^2\)

\(=\left(x-2y-2\right)^2\)

f: \(\left(x+3y\right)^2-12xy\)

\(=x^2+6xy+9y^2-12xy\)

\(=x^2-6xy+9y^2=\left(x-3y\right)^2\)

a: Xét tứ giác ABEC có

M là trung điểm chung của AE và BC

=>ABEC là hình bình hành

b: Xét ΔBHF vuông tại H và ΔBHA vuông tại H có

BH chung

HF=HA

Do đó: ΔBHF=ΔBHA

=>BF=BA

mà BA=CE

nên BF=CE

a: ta có: EI⊥BF

AC⊥BF

Do đó: EI//AC

=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)

\(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)

nên \(\hat{KBE}=\hat{IEB}\)

Xét ΔKBE vuông tại K và ΔIEB vuông tại I có

BE chung

\(\hat{KBE}=\hat{IEB}\)

Do đó: ΔKBE=ΔIEB

=>EK=BI

b: Điểm D ở đâu vậy bạn?

Bài 8:

\(\left(2n+3\right)^2-\left(2n-1\right)^2\)

\(=\left(2n+3+2n-1\right)\left(2n+3-2n+1\right)\)

\(=4\cdot\left(4n+2\right)=4\cdot2\cdot\left(2n+1\right)=8\left(2n+1\right)\) ⋮8

Bai 7:

\(B=x^2+y^2=\left(x+y\right)^2-2xy\)

\(=15^2-2\cdot\left(-100\right)=225+200=425\)

Bài 6:

\(B=\left(3x-1\right)^2-\left(x+7\right)^2-2\left(2x-5\right)\left(2x+5\right)\)

\(=9x^2-6x+1-\left(x^2+14x+49\right)-2\left(4x^2-25\right)\)

\(=9x^2-6x+1-x^2-14x-49-8x^2+50\)

=-20x+2

Khi x=1/5 thì \(B=-20\cdot\frac15+2=-4+2=-2\)

Bài 3:

a: \(x^2-10x+25=\left(x-5\right)^2\)

b: \(4-4x^2+x^4=\left(2-x^2\right)^2\)

c: \(x^2-6xy+9y^2=\left(x-3y\right)^2\)

d: \(\left(2x+y^2\right)\left(2x-y^2\right)=4x^2-y^4\)


Bài 5:

a:

AMCD là hình vuông

=>CM⊥MA tại M

=>CM⊥AB tại M

MBFE là hình vuông

=>MB⊥ME tại M

=>ME⊥AB tại M

mà CM⊥AB tại M

và CM,ME có điểm chung là M

nên M,C,E thẳng hàng

Gọi K là giao điểm của AC và BE

AMCD là hình vuông

=>AC là phân giác của góc DAM

=>\(\hat{CAM}=\frac12\cdot\hat{DAM}=45^0\)

MBFE là hình vuông

=>BE là phân giác của góc MBF

=>\(\hat{MBE}=\hat{FBE}=\frac12\cdot\hat{MBF}=45^0\)

Xét ΔKAB có \(\hat{KAB}+\hat{KBA}=45^0+45^0=90^0\)

nên ΔKAB vuông tại K

=>AK⊥EB tại K

Xét ΔEAB có

AK,EM là các đường cao

AK cắt EM tại C

Do đó: C là trực tâm của ΔEAB

=>BC⊥AE

Bài 4:

a: Xét ΔADI vuông tại D và ΔAHI vuông tại H có

AI chung

\(\hat{DAI}=\hat{HAI}\)

Do đó: ΔADI=ΔAHI

=>AD=AH

mà AD=AB

nên AH=AB

Xét ΔAHK vuông tại H và ΔABK vuông tại B có

AK chung

AH=AB

Do đó: ΔAHK=ΔABK

b: ΔAHK=ΔABK

=>\(\hat{HAK}=\hat{BAK}\)

=>AK là phân giác của góc HAB

=>\(\hat{HAB}=2\cdot\hat{HAK}\)

\(\hat{DAH}+\hat{BAH}=\hat{BAD}\) (tia AH nằm giữa hai tia AB và AD)

\(\Rightarrow2\left(\hat{IAH}+\hat{HAK}\right)=90^0\)

=>\(2\cdot\hat{IAK}=90^0\)

=>\(\hat{IAK}=45^0\)

Bài 13:

a: \(\left\lbrack5\left(x-2y\right)^3\right\rbrack:\left(5x-10y\right)\)

\(=\frac{5\left(x-2y\right)^3}{5\cdot\left(x-2y\right)}\)

\(=\left(x-2y\right)^2\)

b: \(\left\lbrack5\left(a-b\right)^3+2\left(a-b\right)^2\right\rbrack:\left(b-a\right)^2\)

\(=\frac{5\left(a-b\right)^3+2\left(a-b\right)^2}{\left(a-b\right)^2}\)

\(=\frac{5\left(a-b\right)^3}{\left(a-b\right)^2}+\frac{2\left(a-b\right)^2}{\left(a-b\right)^2}\)

=5(a-b)+2

c: Sửa đề: \(\left(x^3+8y^3\right):\left(x+2y\right)\)

\(=\frac{\left(x+2y\right)\left(x^2-2xy+4y^2\right)}{x+2y}\)

\(=x^2-2xy+4y^2\)

Bài 11:

a: Gọi ba số tự nhiên liên tiếp lần lượt là a;a+1;a+2

Tích của hai số sau lớn hơn tích của hai số đầu là 52 nên ta có:

\(\left(a+1\right)\left(a+2\right)-a\left(a+1\right)=52\)

=>\(\left(a+1\right)\left(a+2-a\right)=52\)

=>2(a+1)=52

=>a+1=26

=>a=25

Vậy: ba số tự nhiên liên tiếp cần tìm là 25;25+1=26; 25+2=27

b: a chia 5 dư 1 nên a=5x+1

b chia 5 dư 4 nên b=5y+4

ab+1

\(=\left(5x+1\right)\left(5y+4\right)+1\)

=25xy+20x+5y+4+1

=25xy+20x+5y+5

=5(5xy+4x+y+1)⋮5

c: \(Q=2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)

\(=2n^3+2n^2-2n^3-2n^2+6n\)

=6n⋮6

Bài 8:

a: \(A=x^2+2xy-3x^3+2y^3+3x^3-y^3\)

\(=x^2+2xy-3x^3+3x^3+2y^3-y^3\)

\(=x^2+2xy+y^3\)

Khi x=5;y=4 thì \(A=5^2+2\cdot5\cdot4+4^3=25+40+64=129\)

b: x=-1;y=-1

=>xy=1

\(x^2y^2=\left(xy\right)^2=1^2=1;x^4y^4=\left(xy\right)^4=1^4=1\) ; \(x^6y^6=\left(xy\right)^6=1^6=1;x^8y^8=\left(xy\right)^8=1^8=1\)

=>B=1-1+1-1+1=1

12 tháng 8

S
31 tháng 8

bài 1:

\(a.x^3+1=\left(x+1\right)\left(x^2-x+1\right)\)

\(b.x^3-\frac{1}{27}=\left(x-\frac13\right)\left(x^2+\frac13x+\frac19\right)\)

\(c.x^3-27y^3=\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)

\(d.27x^3+8y^3=\left(3x+2y\right)\left(9x^2-6xy+4y^2\right)\)

bài 2:

\(a.A=\left(x+2\right)\left(x^2-2x+4\right)-x^3+2\)

\(=x^3+8-x^3+2=10\)

\(b.B=\left(x-1\right)\left(x^2+x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)

\(=\left(x^3-1\right)-\left(x^3+1\right)=-2\)

\(c.C=\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(y-3x\right)\left(y^2+3xy+9x^2\right)\)

\(=\left(8x^3-y^3\right)+\left(y^3-27x^3\right)=-19x^3\)

bài 3:

\(a.A=\left(x-5\right)\left(x^2+5x+25\right)=x^3-125\)

thay x = 6 vào A ta được:

\(6^3-125=216-125=91\)

\(b.B=\left(3x-2\right)\left(9x^2+6x+4\right)=27x^3-8\)

thay x = 10/3 vào B ta được:

\(27\cdot\left(\frac{10}{3}\right)^3-8=992\)

\(c.C=\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)=8x^3-27y^3\)

thay x = 5; y = 5/3 vào C ta được

\(8\cdot5^3-27\cdot\left(\frac53\right)^3=875\)

S
31 tháng 8

bài 4:

\(a.\left(2x-5\right)\left(4x^2+10x+25\right)-\left(x+3\right)\left(x^2-3x+9\right)\)

\(=\left(2x-5\right)\left\lbrack\left(2x\right)^2+\left(2x\right)\cdot5+5^2\right\rbrack-\left(x+3\right)\left(x^2-3x+9\right)\)

\(=\left(2x\right)^3-5^3-\left(x^3+3^3\right)\)

\(=8x^3-125-\left(x^3+27\right)=7x^3-152\)

\(b.\left(2y-1\right)\left(4y^2+2y+1\right)+\left(3-y\right)\left(9+3y+y^2\right)+y\left(2-7y^2\right)\)

\(=\left(2y-1\right)\left\lbrack\left(2y\right)^2+\left(2y\right)\cdot1+1^2\right\rbrack+\left(3-y\right)\left(3^2+3y+y^2\right)+2y-7y^3\)

\(=\left(2y\right)^3-1^3+\left(3^3-y^3\right)+2y-7y^3\)

\(=8y^3-1+27-y^3+2y-7y^3=2y+26\)

bài 5:

\(a.A=\left(x+1\right)\left(x^2-x+1\right)-\left(x+3\right)\left(x^2-3x+9\right)\)

\(=\left(x^3+1\right)-\left(x^3+27\right)=-26\)

\(b.B=\left(y+2\right)\left(y^2-2y+4\right)+\left(5-y\right)\left(25+5y+y^2\right)\)

\(=\left(y^3+8\right)+\left(125-y^3\right)=133\)

\(c.C=4\cdot\left(x^3-8\right)-4\cdot\left(x+2\right)\left(x^2-2x+4\right)\)

\(=4\cdot\left(x^3-2^3\right)-4\cdot\left(x^3+2^3\right)\)

\(=4x^3-32-4x^3-32=-64\)

\(d.D=\left(x+2y\right)\left(x^2-2xy+4y^2\right)-\left(x-2y\right)\left(x^2+2xy+4y^2\right)-8\cdot\left(2y^3+1\right)\)

\(=\left(x^3+8y^3\right)-\left(x^3-8y^3\right)-8\cdot\left(2y^3+1\right)=16y^3-16y^3-8=-8\)

Bài 3:

a: Ta có: \(\hat{FAH}+\hat{FAB}+\hat{HAD}+\hat{BAD}=360^0\)

=>\(\hat{FAH}+\hat{DAB}=360^0-90^0-90^0=180^0\)

\(\hat{DAB}+\hat{ADC}=180^0\) (ABCD là hình bình hành)

nên \(\hat{FAH}=\hat{CDA}\)

Ta có: ABEF là hình vuông

=>AB=BE=FE=AF

mà AB=CD

nên AB=CD=BE=FE=AF

Ta có: ADGH là hình vuông

=>AD=DG=GH=HA

mà AD=BC

nên BC=AD=DG=GH=HA

Xét ΔFAH và ΔCDA có

FA=CD

\(\hat{FAH}=\hat{CDA}\)

AH=AD

Do đó: ΔFAH=ΔCDA

=>FH=CA

ΔFAH=ΔCDA

=>\(\hat{FHA}=\hat{CAD}\)

Gọi K là giao điểm của AC và FH

Ta có: \(\hat{KAH}+\hat{HAD}+\hat{DAC}=180^0\)

=>\(\hat{KAH}+\hat{DAC}=180^0-90^0=90^0\)

=>\(\hat{KAH}+\hat{FHA}=90^0\)

=>ΔAKH vuông tại K

=>AK⊥FH tại K

=>CA⊥FH tại K

b: Ta có: \(\hat{CDG}=\hat{CDA}+\hat{ADG}=\hat{CDA}+90^0\)

\(\hat{EBC}=\hat{EBA}+\hat{CBA}=90^0+\hat{CBA}\)

\(\hat{CDA}=\hat{CBA}\) (ABCD là hình bình hành)

nên \(\hat{CDG}=\hat{EBC}\)

Xét ΔCDG và ΔEBC có

CD=EB

\(\hat{CDG}=\hat{EBC}\)

DG=BC

Do đó: ΔCDG=ΔEBC

=>CG=EC và \(\hat{DCG}=\hat{BEC};\hat{DGC}=\hat{BCE}\)

\(\hat{GCE}=\hat{DCB}-\hat{DCG}-\hat{BCE}\)

\(=\hat{DCB}-\hat{BEC}-\hat{BCE}=180^0-\hat{ADC}-\left(180^0-\hat{EBC}\right)=\hat{EBC}-\hat{ADC}\)

\(=\hat{EBA}+\hat{CBA}-\hat{ADC}=\hat{EBA}=90^0\)

=>ΔGCE vuông cân tại C

Bài 2:

a: BO là phân giác của góc ABD

=>\(\hat{ABO}=\hat{DBO}=\frac12\cdot\hat{ABD}\) (1)

CO là phân giác của góc ACE

=>\(\hat{ACO}=\hat{OCE}=\frac12\cdot\hat{ACE}\left(2\right)\)

Ta có: \(\hat{ABD}+\hat{BAC}=90^0\) (ΔADB vuông tại D)

\(\hat{ACE}+\hat{BAC}=90^0\) (ΔAEC vuông tại E)

Do đó: \(\hat{ABD}=\hat{ACE}\left(3\right)\)

Từ (1),(2) suy ra \(\hat{ABO}=\hat{DBO}=\hat{ACO}=\hat{OCE}\)

Ta có: \(\hat{OBC}+\hat{OCB}\)

\(=\hat{OBD}+\hat{DBC}+\hat{OCE}+\hat{ECB}\)

\(=2\cdot\hat{OBD}+\hat{DBC}+\hat{ECB}=\hat{ABD}+90^0-\hat{ABC}+90^0-\hat{ACB}\)

\(=180^0-\hat{ABC}-\hat{ACB}+\hat{ABD}=\hat{BAC}+\hat{ABD}=90^0\)

=>ΔBOC vuông tại O

b: Xét ΔBMH có

BO là đường cao

BO là đường phân giác

Do đó: ΔBMH cân tại B

mà BO là đường cao

nên O là trung điểm của MH

Xét ΔCNK có

CO là đường cao

CO là đường phân giác

Do đó: ΔCNK cân tại C

mà CO là đường cao

nên O là trung điểm của NK

Xét tứ giác MNHK có

O là trung điểm chung của MH và NK

=>MNHK là hình bình hành

Hình bình hành MNHK có MH⊥NK

nên MNHK là hình thoi

Bài 3:

a: Ta có: \(\hat{F A H} + \hat{F A B} + \hat{H A D} + \hat{B A D} = 36 0^{0}\)

=>\(\hat{F A H} + \hat{D A B} = 36 0^{0} - 9 0^{0} - 9 0^{0} = 18 0^{0}\)

mà \(\hat{D A B} + \hat{A D C} = 18 0^{0}\) (ABCD là hình bình hành)

nên \(\hat{F A H} = \hat{C D A}\)

Ta có: ABEF là hình vuông

=>AB=BE=FE=AF

mà AB=CD

nên AB=CD=BE=FE=AF

Ta có: ADGH là hình vuông

=>AD=DG=GH=HA

mà AD=BC

nên BC=AD=DG=GH=HA

Xét ΔFAH và ΔCDA có

FA=CD

\(\hat{F A H} = \hat{C D A}\)

AH=AD

Do đó: ΔFAH=ΔCDA

=>FH=CA

ΔFAH=ΔCDA

=>\(\hat{F H A} = \hat{C A D}\)

Gọi K là giao điểm của AC và FH

Ta có: \(\hat{K A H} + \hat{H A D} + \hat{D A C} = 18 0^{0}\)

=>\(\hat{K A H} + \hat{D A C} = 18 0^{0} - 9 0^{0} = 9 0^{0}\)

=>\(\hat{K A H} + \hat{F H A} = 9 0^{0}\)

=>ΔAKH vuông tại K

=>AK⊥FH tại K

=>CA⊥FH tại K

b: Ta có: \(\hat{C D G} = \hat{C D A} + \hat{A D G} = \hat{C D A} + 9 0^{0}\)

\(\hat{E B C} = \hat{E B A} + \hat{C B A} = 9 0^{0} + \hat{C B A}\)

mà \(\hat{C D A} = \hat{C B A}\) (ABCD là hình bình hành)

nên \(\hat{C D G} = \hat{E B C}\)

Xét ΔCDG và ΔEBC có

CD=EB

\(\hat{C D G} = \hat{E B C}\)

DG=BC

Do đó: ΔCDG=ΔEBC

=>CG=EC và \(\hat{D C G} = \hat{B E C} ; \hat{D G C} = \hat{B C E}\)

\(\hat{G C E} = \hat{D C B} - \hat{D C G} - \hat{B C E}\)

\(= \hat{D C B} - \hat{B E C} - \hat{B C E} = 18 0^{0} - \hat{A D C} - \left(\right. 18 0^{0} - \hat{E B C} \left.\right) = \hat{E B C} - \hat{A D C}\)

\(= \hat{E B A} + \hat{C B A} - \hat{A D C} = \hat{E B A} = 9 0^{0}\)

=>ΔGCE vuông cân tại C

Bài 2:

a: BO là phân giác của góc ABD

=>\(\hat{A B O} = \hat{D B O} = \frac{1}{2} \cdot \hat{A B D}\) (1)

CO là phân giác của góc ACE

=>\(\hat{A C O} = \hat{O C E} = \frac{1}{2} \cdot \hat{A C E} \left(\right. 2 \left.\right)\)

Ta có: \(\hat{A B D} + \hat{B A C} = 9 0^{0}\) (ΔADB vuông tại D)

\(\hat{A C E} + \hat{B A C} = 9 0^{0}\) (ΔAEC vuông tại E)

Do đó: \(\hat{A B D} = \hat{A C E} \left(\right. 3 \left.\right)\)

Từ (1),(2) suy ra \(\hat{A B O} = \hat{D B O} = \hat{A C O} = \hat{O C E}\)

Ta có: \(\hat{O B C} + \hat{O C B}\)

\(= \hat{O B D} + \hat{D B C} + \hat{O C E} + \hat{E C B}\)

\(= 2 \cdot \hat{O B D} + \hat{D B C} + \hat{E C B} = \hat{A B D} + 9 0^{0} - \hat{A B C} + 9 0^{0} - \hat{A C B}\)

\(= 18 0^{0} - \hat{A B C} - \hat{A C B} + \hat{A B D} = \hat{B A C} + \hat{A B D} = 9 0^{0}\)

=>ΔBOC vuông tại O

b: Xét ΔBMH có

BO là đường cao

BO là đường phân giác

Do đó: ΔBMH cân tại B

mà BO là đường cao

nên O là trung điểm của MH

Xét ΔCNK có

CO là đường cao

CO là đường phân giác

Do đó: ΔCNK cân tại C

mà CO là đường cao

nên O là trung điểm của NK

Xét tứ giác MNHK có

O là trung điểm chung của MH và NK

=>MNHK là hình bình hành

Hình bình hành MNHK có MH⊥NK

nên MNHK là hình thoi

a: Xét tứ giác AEDF có \(\hat{AED}=\hat{AFD}=\hat{FAE}=90^0\)

nên AEDF là hình chữ nhật

b: AEDF là hình chữ nhật

=>DF//AE và DF=AE

DF//AE

=>GF//AE
Ta có DF=AE

DF=FG

Do đó: GF=AE

Xét tứ giác AEFG có

AE//FG

AE=FG

Do đó: AEFG là hình bình hành

c: AEDF là hình chữ nhật

=>AD cắt EF tại trung điểm của mỗi đường

mà H là trung điểm của AD

nên H là trung điểm của FE

AEDF là hình chữ nhật

=>AD=FE
\(HA=HD=\frac{AD}{2};HF=HE=\frac{EF}{2}\)

nên \(HA=HD=HF=HE=\frac{EF}{2}=\frac{AD}{2}\)

HI=HF

\(HF=HA\)

\(HA=\frac{AD}{2}\)

Do đó: \(IH=\frac{AD}{2}\)

Xét ΔIAD có

IH là đường trung tuyến

\(IH=\frac{AD}{2}\)

Do đó: ΔIAD vuông tại I

=>IA⊥ID