
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 1:
Giải:
Ta có: \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)
Trong t/g ABC vuông tại A, áp dụng định lí Py-ta-go ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow AB^2+AC^2=15^2=225\)
Đặt \(\frac{AB}{3}=\frac{AC}{4}=k\left(k>0\right)\Rightarrow\left\{\begin{matrix}AB=3k\\AC=4k\end{matrix}\right.\)
Mà \(AB^2+AC^2=225\)
\(\Rightarrow9k^2+16k^2=225\)
\(\Rightarrow25k^2=225\)
\(\Rightarrow k^2=9\)
\(\Rightarrow k=3\)
\(\Rightarrow\left[\begin{matrix}AB=3.3=9\\AC=3.4=12\end{matrix}\right.\)
Vậy AB = 9 cm; AC = 12 cm
2/ áp dụng định lí Py - ta - go vào tam tam giác vuông AHB ta có:
AH2 + BH2 = AB2
=> BH.HC + BH2 = AB2
=> BH( HC + BH ) = AB2
=> BH.BC = AB2 (1)
áp dụng định lí Py - ta - go vào tam giác vuông AHC ta có:
AH2 + HC2 = AC2
=> BH.HC + HC2 = AC2
=> HC( BH + HC ) = AC2
=> HC.BC = AC2 (2)
Từ 1 và 2 ta có:
=> BH.BC + HC.BC = AB2 + AC2
=> BC( BH + HC ) = AB2 + AC2
=> BC.BC = AB2 + AC2
=> BC2 = AB2 + AC2
Theo định lí Py - ta - go đảo
=> \(\Delta ABC\) vuông tại A (đpcm)
A H C C

Ta có : \(\frac{AB}{AC}=\frac{5}{12}\)
\(\Rightarrow AB=\frac{5}{12}.AC\)
Ta lại có : AC-AB=14
\(\Rightarrow AC-\frac{5}{12}AC=14\)
\(\Rightarrow\frac{7}{12}AC=14\)
\(\Rightarrow AC=24\)
\(\Rightarrow AB=\frac{5}{12}.24=10\)
Xét \(\Delta ABCvuôngtạiA:\)
BC2=AB2+AC2 (theo ĐL Py-ta -go)
\(\Rightarrow\)BC2=102+242=676
\(\Rightarrow BC=\sqrt{676}=26\)

Hình tự vẽ nha
Ta luôn có:
\(AD>AB-BD\)
\(AD>AC-CD\)
Suy ra: \(2AD>AB+AC-\left(BD+CD\right)\)
Suy ra: \(AD>\frac{AB+AC-\left(BD+CD\right)}{2}>\frac{AB+AC-BC}{2}\)(1)
Mặt khác:
\(AB>AD-BD\)
\(AC>AD-CD\)
Suy ra: \(AB+AC>2AD-\left(BD+CD\right)>2AD-BC\)
\(\Rightarrow AB+AC+BC>2AD\)
\(\Rightarrow\frac{AB+AC+BC}{2}>AD\)(2)
Từ (1) và (2)
......
BN tự Kết luận.
🇧🇿 có thể là một ☝️ của anh là không có 🫡 không phải……….////////////////////