\(abc^2-ab+abc^2+ab\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

🇧🇿 có thể là một ☝️ của anh là không có 🫡 không phải……….////////////////////

14 tháng 2 2017

Bài 1:
Giải:

Ta có: \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)

Trong t/g ABC vuông tại A, áp dụng định lí Py-ta-go ta có:
\(AB^2+AC^2=BC^2\)

\(\Rightarrow AB^2+AC^2=15^2=225\)

Đặt \(\frac{AB}{3}=\frac{AC}{4}=k\left(k>0\right)\Rightarrow\left\{\begin{matrix}AB=3k\\AC=4k\end{matrix}\right.\)

\(AB^2+AC^2=225\)

\(\Rightarrow9k^2+16k^2=225\)

\(\Rightarrow25k^2=225\)

\(\Rightarrow k^2=9\)

\(\Rightarrow k=3\)

\(\Rightarrow\left[\begin{matrix}AB=3.3=9\\AC=3.4=12\end{matrix}\right.\)

Vậy AB = 9 cm; AC = 12 cm

14 tháng 2 2017

2/ áp dụng định lí Py - ta - go vào tam tam giác vuông AHB ta có:

AH2 + BH2 = AB2

=> BH.HC + BH2 = AB2

=> BH( HC + BH ) = AB2

=> BH.BC = AB2 (1)

áp dụng định lí Py - ta - go vào tam giác vuông AHC ta có:

AH2 + HC2 = AC2

=> BH.HC + HC2 = AC2

=> HC( BH + HC ) = AC2

=> HC.BC = AC2 (2)

Từ 1 và 2 ta có:

=> BH.BC + HC.BC = AB2 + AC2

=> BC( BH + HC ) = AB2 + AC2

=> BC.BC = AB2 + AC2

=> BC2 = AB2 + AC2

Theo định lí Py - ta - go đảo

=> \(\Delta ABC\) vuông tại A (đpcm)

A H C C

28 tháng 1 2018

\(M\) bất kì và không trùng với \(B;C?\)

21 tháng 1 2017

mình nghĩ là \(\sqrt{6}\)ko pít đúng ko nữa

24 tháng 6 2019

Ta có : \(\frac{AB}{AC}=\frac{5}{12}\)

\(\Rightarrow AB=\frac{5}{12}.AC\)

Ta lại có : AC-AB=14

\(\Rightarrow AC-\frac{5}{12}AC=14\)

\(\Rightarrow\frac{7}{12}AC=14\)

\(\Rightarrow AC=24\)

\(\Rightarrow AB=\frac{5}{12}.24=10\)

Xét \(\Delta ABCvuôngtạiA:\)

BC2=AB2+AC2 (theo ĐL Py-ta -go)

\(\Rightarrow\)BC2=102+242=676

\(\Rightarrow BC=\sqrt{676}=26\)

24 tháng 6 2019

bạn nhớ theo dõi và tick cho mk nhé

15 tháng 3 2018

Hình tự vẽ nha

Ta luôn có:

\(AD>AB-BD\)

\(AD>AC-CD\)

Suy ra: \(2AD>AB+AC-\left(BD+CD\right)\)

Suy ra: \(AD>\frac{AB+AC-\left(BD+CD\right)}{2}>\frac{AB+AC-BC}{2}\)(1)

Mặt khác: 

\(AB>AD-BD\)

\(AC>AD-CD\)

Suy ra: \(AB+AC>2AD-\left(BD+CD\right)>2AD-BC\)

\(\Rightarrow AB+AC+BC>2AD\)

\(\Rightarrow\frac{AB+AC+BC}{2}>AD\)(2)

Từ (1) và (2)

......

BN tự Kết luận.