K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta khai triển :

\(\left(\right. 1 - x \left.\right) \left(\right. 1 + x \left.\right) = 1 - x^{2}\)

\(\left(\right. 1 + x^{2} \left.\right)\):

\(\left(\right. 1 - x^{2} \left.\right) \left(\right. 1 + x^{2} \left.\right) = 1 - x^{4}\)

Vậy

\(\left(\right. 1 - x \left.\right) \left(\right. 1 + x \left.\right) \left(\right. 1 + x^{2} \left.\right) = 1 - x^{4}\)

\(\left(1-x\right)\left(1+x\right)\left(1+x^2\right)\)

\(=\left(1-x^2\right)\left(1+x^2\right)\)

\(=1^2-\left(x^2\right)^2=1-x^4\)

30 tháng 6 2018

-(a - 3)2 = -(a2 - 6a + 9) = -a2 + 6a - 9

(x - 2)(x + 2) = x2 - 4

-(5 + 4y)(5 - 4y) = -(25 - 16y2) = -25 + 16y2

(\(\dfrac{1}{2}\)x + 2y)(\(\dfrac{1}{2}\)x - 2y) = \(\dfrac{1}{4}\)x2 - 4y2

5 tháng 7 2021

\(a,\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)\)

\(\sqrt{x}^2-6^2\)

\(x-36\)

\(b,\left(2\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)\)

\(\left(2\sqrt{x}\right)^2-1\)

\(4x-1\)

5 tháng 7 2021

\(\left(\sqrt{x}-6\right)\left(6+\sqrt{x}\right)\)

\(=\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)\)

\(=\left(\sqrt{x}\right)^2-6^2\)

\(=x-36\)

b.\(\left(2\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)\)

\(=\left(2\sqrt{x}\right)^2-1^2\)

\(=4x-1\)

19 tháng 6 2018

a,\(\left(2x-1\right)\left(4x^2+2x+1\right)=\left(2x-1\right)\left[\left(2x\right)^2+2x.1+1^2\right]\)

\(=\left(2x\right)^3-1=8x^3-1\)

b,\(\left(x+2y+z\right)\left(x+2y-z\right)=\left(x+2y\right)^2-z^2\)

\(=x^2+2.x.2y+\left(2y\right)^2-z^2=x^2+4xy+4y^2-z^2\)

11 tháng 9 2021

`a)(2x-1)(4x^2+2x+1)`

`=(2x-1)[(2x)^2+2x.1+1^2]`

`=(2x)^3-1^3`

`=8x^3-1`

Áp dụng HĐT:`A^3-B^3=(A-B)(A^2+AB+B^2)`

`b)(x+2y+z)(x+2y-z)`

`=[(x+2y)+z][(x+2y)-z]`

`=(x+2y)^2-z^2`

`=x^2+2.x.2y+(2y)^2-z^2`

`=x^2+4xy+4y^2-z^2`

Áp dụng HĐT:`A^2-B^2=(A+B)(A-B)`

                      `(A+B)^2=A^2+2AB+B^2`

11 tháng 6 2018

a) \(\left(2x^2-1\right)^2\)

\(=4x^4-4x^2+1\)

b)\(\left(\dfrac{1}{2}x+3y^2\right)^2\)

\(=\dfrac{1}{4}x^2+3xy^2+9y^4\)

 

19 tháng 6 2018

a) \(\left(2x-1\right)\left(4x^2+2x+1\right)=8x^3-1\)

b) \(\left(x+2y+z\right)\left(x+2y-z\right)=\left(x+2y\right)^2-z^2\)

20 tháng 6 2018

a) \(\left(2x-1\right)\left(4x^2+2x+1\right)=\left(2x\right)^3-1^3=8x^3-1\)

b) \(\left(x+2y+z\right)\left(x+2y-z\right)=\left(x+2y\right)^2-z^2.\)

11 tháng 6 2018

a) \(\left(2x^2-1\right)^2=\left(2x^2\right)^2-2.2x^2.1+1^2\)

\(=4x^4-4x^2+1\).

b) \(\left(\frac{1}{2}x+3y^2\right)^2=\left(\frac{1}{2}x\right)^2+2.\frac{1}{2}x.3y^2+\left(3y^2\right)^2\)

\(=\frac{1}{4}x^2+3y^2x+9y^4\)

Chúc bn hc tốt!

AH
Akai Haruma
Giáo viên
23 tháng 10 2020

1.

$27x^2-1=(\sqrt{27}x)^2-1^2=(\sqrt{27}x-1)(\sqrt{27}x+1)$

2.

a)

$x^3-9x^2+27x-27=-8$

$\Leftrightarrow x^3-3.3x^2+3.3^2.x-3^3=-8$

$\Leftrightarrow (x-3)^3=-8=(-2)^3$

$\Rightarrow x-3=-2$

$\Leftrightarrow x=1$

b)

$64x^3+48x^2+12x+1=27$

$\Leftrightarrow (4x)^3+3.(4x)^2.1+3.4x.1^2+1^3=27$

$\Leftrightarrow (4x+1)^3=3^3$

$\Rightarrow 4x+1=3$

$\Leftrightarrow x=\frac{1}{2}$

29 tháng 6 2017

\(=3x^2\left(x^2-1\right)+\left(x^8-3x^4+3x^2-1\right)-\left(x^8-1\right)\)

\(=3x^4-3x^2+x^8-3x^4+3x^2+1-x^8+1\)

\(=2\)

=2 nha ban

(con cach lam ban nhan dang thuc len rui rut gon lai)

23 tháng 8 2020

1) \(\left(3x^2-1\right)\left(9x^4+3x^2+1\right)\)

\(=27x^6+9x^4+3x^2-9x^4-3x^2-1\)

\(=27x^6-1\) (hằng đẳng thức dạng a3 - b3)

2) \(\left(x^2-4\right)\left(x^2+2x+4\right)\left(x^2-2x+4\right)\) 

\(=\left(x-2\right)\left(x+2\right)\left(x^2+2x+4\right)\left(x^2-2x+4\right)\)

\(=\left[\left(x-2\right)\left(x^2+2x+4\right)\right].\left[\left(x+2\right)\left(x^2-2x+4\right)\right]\)

\(=\left(x^3-8\right)\left(x^3+8\right)\)

\(=x^6-64\)

23 tháng 8 2020

a) \(\left(3x^2-1\right)\left(9x^4+3x^2+1\right)=\left(3x^2-1\right)\left[\left(3x^2\right)^2+3x^2.1+1^2\right]=\left(3x^2\right)^3-1^3=3x^6-1\)

b) \(\left(x^2-4\right).\left(x^2+2x+4\right).\left(x^2-2x+4\right)=\left(x^2-2^2\right).\left(x+2\right)^2.\left(x-2\right)^2=\left(x+2\right).\left(x-2\right).\left(x+2\right)^2.\left(x-2\right)^2=\left(x+2\right)^3.\left(x-2\right)^3\)

11 tháng 6 2018

Giải:

a) \(\left(2x+y+3\right)^2\)

\(=\left(2x+y\right)^2+2.3\left(2x+y\right)+3^2\)

\(=\left(2x\right)^2+2.2x.y+y^2+2.3\left(2x+y\right)+3^2\)

\(=4x^2+4xy+y^2+12x+6y+9\)

Vậy ...

b) \(\left(x-2y+1\right)^2\)

\(=\left(x-2y\right)^2+2\left(x-2y\right)+1^2\)

\(=x^2-2.x.2y+\left(2y\right)^2+2x-4y+1^2\)

\(=x^2-4xy+4y^2+2x-4y+1\)

Vậy ...

c) \(\left(x^2-2xy^2-3\right)^2\)

\(=\left(x^2-2xy^2\right)^2+2.3.\left(x^2-2xy^2\right)-3^2\)

\(=\left(x^2\right)^2-2.x^2.2xy^2+\left(2xy^2\right)^2+2.3.\left(x^2-2xy^2\right)-3^2\)

\(=x^4-4x^3y^2+4x^2y^4+6x^2-12xy^2-9\)

Vậy ...