
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Cách làm như sau:
Nhân các tử vs nhau, các mẫu vs nhau ta đc xyz/2*3*5=810/30=27
=> x=27*2=...
y=27*3=...
z=27*5=...

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow x=2k;y=3k;z=5k\)
\(\Rightarrow xyz=810\Leftrightarrow2k\cdot3k\cdot5k=810\)
\(\Rightarrow30k^3=810\Rightarrow k^3=27\)
\(\Rightarrow k^3=3^3\Rightarrow k=3\)
\(\Rightarrow y=3k=3\cdot3=9\)

ta có : x/2=y/3=z/5
đặt x/2=y/3=z/5=k
=> x=2k ; y=3k ; z=5k
mà x.y.z=810
=> 2k.3k.5k=810
=> k3.(2.3.5)=810
=> k3.30=810
=> k3 =27
=> k=3
+,x=2k => x=2.3=6
+, y=3k => y=3.3=9
+, z=5k => z=5.3=15
Vậy x=6 ; y=9 ; z=15.

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k,y=3k,z=5k\)
Ta có:
\(xyz=810\\ \Rightarrow2k.3k.5k=810\\ \Rightarrow30k^3=810\\ \Rightarrow k^3=810:30\\ \Rightarrow k^3=27\\ \Rightarrow k=3\)
Vậy:
x = 2k = 2.3 = 6
y = 3k = 3.3 = 9
z = 5k = 5.3 = 15

Ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
=> \(\frac{x}{2}.\frac{x}{2}.\frac{x}{2}=\frac{y}{3}.\frac{y}{3}.\frac{y}{3}=\frac{z}{5}.\frac{z}{5}.\frac{z}{5}=\frac{x}{2}.\frac{y}{3}.\frac{z}{5}\)
=> \(\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{125}=\frac{810}{30}=27\)
=> \(\hept{\begin{cases}x^3=27.8=6^3\\y^3=27.27=9^3\\z^3=27.125=15^3\end{cases}}\)=> \(\hept{\begin{cases}x=6\\y=9\\z=15\end{cases}}\)
Vậy ...

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và \(xyz=810\)(1)
đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)(2)
thay (2) vào (1), ta được:
\(xyz=2k\cdot3k\cdot5k=810\)
\(\Leftrightarrow30k^3=810\)
\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)
từ đó
\(\Rightarrow\hept{\begin{cases}x=3\cdot2=6\\y=3\cdot3=9\\z=3\cdot5=15\end{cases}}\)
vậy x=6; y=9; z=15
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\Rightarrow\hept{\begin{cases}x=\frac{2y}{3}\\z=\frac{5y}{3}\end{cases}}\)thế vào \(xyz=810\)ta đc: \(\frac{2y.5y.y}{3.3}=810\Leftrightarrow y^3=729\Leftrightarrow y=9\Rightarrow x=6;z=15\)

Đặt :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\) \(\left(1\right)\)
Thay \(\left(1\right)\) vào \(xyz=810\) ta dduocj :
\(2k.3k.5k=810\)
\(\Leftrightarrow30k^3=810\)
\(\Leftrightarrow k^3=27\)
\(\Leftrightarrow k=3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=9\\z=15\end{matrix}\right.\)
Vậy ..
Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)
mà xyz = 810
hay \(2k.3k.5k=810\)
\(\Rightarrow30.k^2=810\)
\(\Rightarrow k^2=27=3^3\)
\(\Rightarrow k=3\)
Với k = 3 \(\Rightarrow\left\{{}\begin{matrix}x=2.3=6\\y=3.3=9\\z=5.3=15\end{matrix}\right.\)
Vậy.........

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
Ta có
\(xyz=2k\cdot3k\cdot5k=810\)
\(\Rightarrow30k^3=810\)
\(\Rightarrow k^3=810:30=27\)
\(\Rightarrow k=3\)
Với \(k=3\)ta có
\(\hept{\begin{cases}x=2\cdot3\\y=3\cdot3\\z=5\cdot3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=15\end{cases}}}\)
Vậy..................
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và \(xyz=810\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Leftrightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
Thay \(\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)và \(xyz=810\)
Ta có : \(2k.3k.5k=810\)
\(\left(2.3.5\right).\left(k.k.k\right)=810\)
\(30.k^3=810\)
\(k^3=810:30\)
\(k^3=27\)
\(k=3\)
Vì \(k=3\)
Ta có : \(\hept{\begin{cases}x=2.3=6\\y=3.3=9\\z=5.3=15\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=15\end{cases}}\)

Đặt k = \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Khi đó : k3 = \(\frac{x}{2}\frac{y}{3}\frac{z}{5}=\frac{xyz}{2.3.5}=\frac{810}{30}=27\)
=> k = 3
Nên : \(\frac{x}{2}=3\Rightarrow x=6\)
\(\frac{y}{3}=3\Rightarrow y=9\)
\(\frac{z}{5}=3\Rightarrow z=15\)
Vậy x = 6 , y = 9 , z = 15
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)= k => \(x=2k\); \(y=3k\); \(z=5k\)
=> \(x.y.z=2k.3k.5k=30k^3=180\)=> \(k^3=\frac{180}{30}=6\)=> \(k=\sqrt[3]{6}\)
=> \(x=2\sqrt[3]{6}\); \(y=3\sqrt[3]{6}\); \(z=5\sqrt[3]{6}\)

b, Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\) =>\(\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
=> xyz=2k.3k.5k=810
=> 30k3=810 =>k3=27 =>k=3
=>\(\hept{\begin{cases}x=2.3=6\\y=3.3=9\\z=5.3=15\end{cases}}\)
1
2