
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có:
\(2^{3^{2^3}}=2^{3^8}=2^{6561}=2^{3.2187}=8^{2187}\)
\(3^{2^{3^2}}=3^{2^9}=3^{512}\)
Ta thấy \(8^{2187}>3^{512}\Rightarrow2^{3^{2^3}}>3^{2^{3^2}}\)
\(2^{3^{2^3}}=2^{3^8}=2^{6561}\)
\(3^{2^{3^2}}=3^{2^9}=3^{512}\)
Tới đây mk chịu để mk suy nghĩ đã!

2^6=64
8^2=64. Vậy 2^6=8^2
5^3=125, 3^5=243. Vì 243>125 nên 5^3<3^5

Ta co
\(27^{672}=\left(27^4\right)^{168}=531441^{168}\)
\(256^{504}=\left(256^3\right)^{168}=16777261^{168}\)
vi 531441<16777261\(\Rightarrow531441^{168}< 16777261^{168}\)
do do\(27^{672}< 256^{504}\)

Ta có:
\(2^{3^{2^3}}=2^{3^8}=2^{6561}=2^{3.2187}=\left(2^3\right)^{2187}=8^{2187}\)
\(3^{2^{3^2}}=3^{2^9}=3^{512}\)
Vì: 8 > 3 và 2187 > 512
\(\Rightarrow8^{2187}>3^{512}\)
\(\Rightarrow2^{3^{2^3}}>3^{2^{3^2}}\)
Vậy: \(2^{3^{2^3}}>3^{2^{3^2}}\)

2^300 và 4^150
Có : 2^300 = 2^2.150 = (2^2)^150 = 4^150
=> 2^300 = 4^150
2^300 và 3^200
Có : 2^300 = 2^100.3 = (2^3)^100 = 8^100
3^2 = 3^2.100 = (3^2)^100 = 9^100
Vì 8^100 < 9^100 => 2^300 < 3^200
k mk nha
a )Ta có : \(2^{300}=\left(2^2\right)^{150}=4^{150}\)
Vì \(4^{150}=4^{150}\)
\(\Rightarrow2^{300}=4^{150}\)
b) Ta có :\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Vì \(9^{100}>8^{100}\)
\(\Rightarrow2^{300}< 3^{200}\)

b)Ta có:
\(3^{99}>3^{93}=\left(3^3\right)^{21}=27^{21}\)
Vì \(27^{21}>11^{21}\) nên \(3^{99}>27^{21}>11^{21}\) hay \(3^{99}>11^{21}\)
a) Ta có:
19920 < 20020 = 20015.2005
200315 > 200015 = 20015.1015 = 20015.(103)5 = 20015.10005
Vì 19920 < 20015.2005 < 20015.10005 < 200315
=> 19920 < 200315
b) Ta có:
399 = (33)33 = 2733 > 1121
=> 399 > 1121

Đặt 1931 = a ( cho đơn giản nha)
\(A=\frac{\frac{a}{19}+5}{a+5}=\frac{a+95}{19\left(a+5\right)}\)
\(B=\frac{a+5}{19a+5}\)
Ta có
\(B-A=\frac{a+5}{19a+5}-\frac{a+95}{19\left(a+5\right)}=-\frac{1620a}{19\left(a+5\right)\left(19a+5\right)}< 0\)
Vậy A > B
Cách khá nhé
Ta có
\(19A=\frac{30^{31}+19.5}{30^{31}+5}=1+\frac{90}{30^{31}+5}\)
\(19B=\frac{30^{32}+19.5}{30^{32}+5}=1+\frac{90}{30^{32}+5}\)
Vì \(30^{31}+5< 30^{32}+5\Rightarrow\frac{90}{30^{31}+5}>\frac{90}{30^{32}+5}\)
\(\Rightarrow1+\frac{90}{30^{31}+5}>1+\frac{90}{30^{32}+5}\)
\(\Rightarrow19A>19B\Rightarrow A>B\)

\(7^{300}=\left(7^3\right)^{100}=343^{100}\)
\(4^{450}=\left(2^2\right)^{450}=2^{900}=\left(2^9\right)^{100}=512^{100}\)
mà \(512^{100}>343^{100}\Rightarrow4^{450}>7^{300}\)
Tham khảo nhé
27 mũ 672 = (3 mũ 3) mũ 672 = 3 mũ 2016
256 mũ 504 = (16 mũ 2) mũ 504 = 16 mũ 2016
=> 27 mũ 672 < 256 mũ 504