K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

|x-1|+|x-7|

\(=\left|x-1\right|+\left|7-x\right|\)

=>\(\left|x-1\right|+\left|x-7\right|\ge\left|x-1+7-x\right|=6\)

25 tháng 7

\(\left\vert x-1\right\vert+\left\vert7-x\right\vert\ge6\)

\(= \mid x - 1 \mid + \mid 7 - x \mid\)

=>\(\mid x - 1 \mid + \mid x - 7 \mid \geq \mid x - 1 + 7 - x \mid = 6\)

15 tháng 2 2017

ơ lạ ~ vì x;y;z đều là số dương nên x2<x5;y3<y6;z4<z7 cộng lại x2+y3+z4<x5+y6+zchứ, sao lại cho cái vế phải nhỏ hơn vế trái vậy???

15 tháng 2 2017

đề cho là số thực mà

13 tháng 7 2015

Bài 2: a)

\(5^5-5^4+5^3=5^3\left(5^2-5+1\right)=5^3.21=5^3.3.7\) chia hết cho \(7\) 

Vậy \(5^5-5^4+5^3\) luôn chia hết cho \(7\)

b) \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55\) chia hết cho \(7\)

Vậy \(7^6+7^5-7^4\)chia hết cho \(7\)

13 tháng 7 2015

Bài 2:       

a/ Vì: \(5^5-5^4+5^3=3125-625+125=2625\) 

Lấy 2625 chia  cho 7 cho kết quả:  \(2625:7=375\)

Suy ra: \(5^5-5^4+5^3\) chia hết cho 7        

b/  Vì: \(7^6+7^5-7^4=117649+16807-2401=132055\)

Lấy 132055 chia cho 7 cho kết quả: \(132055:7=18865\)

Suy ra : \(7^6+7^5-7^4\) chia hết cho 7      

Câu a thì em biết đáp án nhưng không biết trả lời sao, nhờ các bạn trả lời câu a đó 

25 tháng 4 2017

Ta có 

\(f\left(x\right)=\frac{1}{6}x^3-\frac{1}{6}x\)

\(f\left(x\right)=\frac{1}{6}x\left(x^2-1\right)\)

Ta sẽ chứng minh x(x2-1) luôn chia hết cho 6

Thật vậy, ta có x(x2-1)=x(x-1)(x+1)

Ta có x(x-1)(x+1) luôn chẵn vì nếu x chẵn thì tất nhiên là chẵn. Nếu x lẻ thì x-1 và x+1 chia hết cho 2 => Tích chẵn

Với x=3k  => Tích chia hết cho 3

Với x=3k+1  =>x-1 chia hết cho 3 => tích chia hết cho 3

Với x=3k+2 =>x+1 chia hết cho 3  => Tích chia hết cho 3

Vậy tích luôn chia hết cho 3

Ta có tích chia hết cho 2 và 3, mà (2,3)=1 =>Tích chia hết cho 6

=> x(x2-1) luôn chia hết cho 6

Vậy f(x) luôn là số nguyên

Ta có 
ƒ x =
6
1 x
3 −
6
1 x
ƒ x =
6
1 x x
2 − 1
Ta sẽ chứng minh x(x2
-1) luôn chia hết cho 6
Thật vậy, ta có x(x2
-1)=x(x-1)(x+1)
Ta có x(x-1)(x+1) luôn chẵn vì nếu x chẵn thì tất nhiên là chẵn. Nếu x lẻ thì x-1 và x+1 chia hết cho 2 => Tích chẵn
Với x=3k  => Tích chia hết cho 3
Với x=3k+1  =>x-1 chia hết cho 3 => tích chia hết cho 3
Với x=3k+2 =>x+1 chia hết cho 3  => Tích chia hết cho 3
Vậy tích luôn chia hết cho 3
Ta có tích chia hết cho 2 và 3, mà (2,3)=1 =>Tích chia hết cho 6
=> x(x2
-1) luôn chia hết cho 6
Vậy f(x) luôn là số nguyên

25 tháng 2 2020

Bài 1 :

Ta có : \(15x^4y^n.\left(-2x^5y^9\right)=30x^9y^{17}\)

=> \(15x^4.\left(-y\right)^n.\left(-2\right).\left(-x\right)^5.\left(-y\right)^9=30\left(-x\right)^9.\left(-y\right)^{17}\)

=> \(30\left(-x\right)^9.\left(-y\right)^{n+9}=30.\left(-x\right)^9\left(-y\right)^{17}\)

=> \(\left(x\right)^9.\left(-y\right)^{n+9}=\left(-x\right)^9\left(-y\right)^{17}\)

=> \(x^9y^{n+9}=x^9y^{17}\)

- TH1 : \(x,y=0\)

=> \(0^{n+9}=0^{17}\) ( Luôn đúng \(\forall n\) )

=> \(n\in R\)

- TH2 : \(x,y\ne0\)

=> \(y^{n+9}=y^{17}\)

=> \(n+9=17\)

=> \(n=8\)

25 tháng 2 2020

Nguyễn Ngọc Lộc Nguyễn Lê Phước Thịnh?Amanda?Trần Quốc KhanhPhạm Lan HươngNatsu Dragneel 2005Trung NguyenNo choice teenPhạm Thị Diệu HuyềnTrên con đường thành công không có dấu chân của kẻ lười biếng giúp em với ạ

\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

1/* Chứng minh rằng:

\(\dfrac{1}{1\times2}+\dfrac{1}{3\times4}+\dfrac{1}{5\times6}+...\dfrac{1}{49\times50}=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+..+\dfrac{1}{50}\)

2/* Cho:

A=\(\dfrac{1}{1\times2}+\dfrac{1}{3\times4}+\dfrac{1}{5\times6}+.....+\dfrac{1}{99\times100}\). Chứng minh rằng:\(\dfrac{7}{12}< A>\dfrac{5}{6}\)

Các bn giúp mk những bài này nha!

4
16 tháng 7 2017

\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

\(\Rightarrow\dfrac{x+4}{2000}+1+\dfrac{x+3}{2001}+1=\dfrac{x+2}{2002}+1+\dfrac{x+1}{2003}+1\)

\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}=\dfrac{x+2004}{2002}+\dfrac{x+2004}{2003}\)

\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)

\(\Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Rightarrow x+2004=0\Rightarrow x=-2004\)

16 tháng 7 2017

\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

\(\Rightarrow\dfrac{x+4}{2000}+\dfrac{x+3}{2001}-\dfrac{x+2}{2002}-\dfrac{x+1}{2003}=0\)

\(\Rightarrow\dfrac{x+4}{2000}+1+\dfrac{x+3}{2001}+1-\dfrac{x+2}{2002}-1-\dfrac{x+1}{2003}-1=0\)

\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)

\(\Rightarrow x+2004\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Rightarrow x+2004=0\)

\(\Rightarrow x=-2004\)

Vậy \(x=-2004\)

Ta có :

\(f\left(x\right)=x^6-x^3+x^2-x+1=\left(x^6-x^3+\frac{1}{4}\right)+\left(x^2-x+\frac{1}{4}\right)+\frac{1}{2}\)\(=\left(x^3+\frac{1}{2}\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\)\(\ge\)\(\frac{1}{2}\)với mọi x )

Vậy đa thức không có nghiệm trên tập hợp số thực.