
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1: 2⋮x
mà x là số tự nhiên
nên x∈{1;2}
2: 2⋮x+1
=>x+1∈{1;-1;2;-2}
=>x∈{0;-2;1;-3}
mà x>=0
nên x∈{0;1}
3: 2⋮x+2
mà x+2>=2(Do x là số tự nhiên)
nên x+2=2
=>x=0
4: 2⋮x-1
=>x-1∈{1;-1;2;-2}
=>x∈{2;0;3;-1}
mà x>=0
nên x∈{0;2;3}
5: 2⋮x-2
=>x-2∈{1;-1;2;-2}
=>x∈{3;1;4;0}
6: 2⋮2-x
=>2⋮x-2
=>x-2∈{1;-1;2;-2}
=>x∈{3;1;4;0}
Bài 1:
2 ⋮ \(x\)(\(x\) ∈ N*)
2 ⋮ \(x\)
⇒ \(x\) ∈ Ư(2) = {-2; -1; 1; 2}
Vì \(x\) ∈ N* nên \(x\) ∈ {1; 2}
Vậy \(x\) ∈ {1; 2}

Bài 3:
4; 45 + 5\(x\) = 10\(^3\): 10
45 + 5\(x\) = 100
5\(x\) = 100 - 45
5\(x\) = 55
\(x\) = 55 : 5
\(x\) = 11
Vậy \(x=11\)
5; 4\(x\) - 20 = 2\(^5\) : 2\(^2\)
4\(x\) - 20 = 2\(^3\)
4\(x\) = 8 + 20
4\(x\) = 28
\(x\) = 28 : 4
\(x=7\)
Vậy \(x=7\)

Bài 8:
a: \(5^3=125;3^5=243\)
mà 125<243
nên \(5^3<3^5\)
b: \(7\cdot2^{13}<8\cdot2^{13}=2^3\cdot2^{13}=2^{16}\)
c: \(27^5=\left(3^3\right)^5=3^{3\cdot5}=3^{15}\)
\(243^3=\left(3^5\right)^3=3^{5\cdot3}=3^{15}\)
Do đó: \(27^5=243^5\)
d: \(625^5=\left(5^4\right)^5=5^{4\cdot5}=5^{20}\)
\(125^7=\left(5^3\right)^7=5^{3\cdot7}=5^{21}\)
mà 20<21
nên \(625^5<125^7\)
Bài 9:
a: \(3^{x}\cdot5=135\)
=>\(3^{x}=\frac{135}{5}=27=3^3\)
=>x=3(nhận)
b: \(\left(x-3\right)^3=\left(x-3\right)^2\)
=>\(\left(x-3\right)^3-\left(x-3\right)^2=0\)
=>\(\left(x-3\right)^2\cdot\left\lbrack\left(x-3\right)-1\right\rbrack=0\)
=>\(\left(x-3\right)^2\cdot\left(x-4\right)=0\)
=>\(\left[\begin{array}{l}x-3=0\\ x-4=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=3\left(nhận\right)\\ x=4\left(nhận\right)\end{array}\right.\)
c: \(\left(2x-1\right)^4=81\)
=>\(\left[\begin{array}{l}2x-1=3\\ 2x-1=-3\end{array}\right.\Rightarrow\left[\begin{array}{l}2x=4\\ 2x=-2\end{array}\right.\Rightarrow\left[\begin{array}{l}x=2\left(nhận\right)\\ x=-1\left(loại\right)\end{array}\right.\)
d: \(\left(5x+1\right)^2=3^2\cdot5+76\)
=>\(\left(5x+1\right)^2=9\cdot5+76=45+76=121\)
=>\(\left[\begin{array}{l}5x+1=11\\ 5x+1=-11\end{array}\right.\Rightarrow\left[\begin{array}{l}5x=10\\ 5x=-12\end{array}\right.\Rightarrow\left[\begin{array}{l}x=2\left(nhận\right)\\ x=-\frac{12}{5}\left(loại\right)\end{array}\right.\)
e: \(5+2^{x-3}=29-\left\lbrack4^2-\left(3^2-1\right)\right\rbrack\)
=>\(2^{x-3}+5=29-\left\lbrack16-9+1\right\rbrack\)
=>\(2^{x-3}+5=29-8=21\)
=>\(2^{x-3}=16=2^4\)
=>x-3=4
=>x=4+3=7(nhận)
f: \(3+2^{x-1}=24-\left\lbrack4^2-\left(2^2-1\right)\right\rbrack\)
=>\(2^{x-1}+3=24-\left\lbrack16-4+1\right\rbrack=24-13=11\)
=>\(2^{x-1}=11-3=8=2^3\)
=>x-1=3
=>x=4(nhận)
Bài 6:
a: \(5\cdot5\cdot5\cdot5\cdot5\cdot5=5^6\)
b: \(27\cdot14\cdot7\cdot2=27\cdot14\cdot14=3^3\cdot14^2\)
c: \(x\cdot x\cdot x\cdot y=x^3\cdot y\)
d: \(5^3\cdot5^4=5^{3+4}=5^7\)
e: \(7^8:7^2=7^{8-2}=7^6\)
f: \(42^7:6^7\cdot49=7^7\cdot49=7^7\cdot7^2=7^{7+2}=7^9\)

Câu 6:
2\(xy\) - 5 = y - 2\(x\)
2\(xy\) + 2\(x\) = 5 + y
\(x\)(2y + 2) = 5 + y
\(x\) = \(\frac{5+y}{2y+2}\)
\(x\) ∈ Z ⇔ (5+ y) ⋮ (2y + 2)
(10 + 2y) ⋮ (2y + 2)
[(2y+ 2) + 8] ⋮ (2y+ 2)
8 ⋮ (2y+ 2)
(2y+ 2) ∈ Ư(8) = {-8; -4; -2; - 1; 1; 2; 4; 8}
Lập bảng ta có:
2y+2 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
y | -5 | -3 | -2 | -3/2 | 1/2 | 0 | 1 | 3 |
\(x=\frac{5+y}{2y+2}\) | 0 | -1/2 | -3/2 | 5/4 | 3/2 | 1 | ||
\(x;y\in Z\) | ktm | ktm | ktm | ktm | ktm | tm |
Theo bảng trên ta có: (\(x;y\)) = (0; -5); (1; 3)
2xy - 5 = y - 2x
2xy - y + 2x =5
2x( y+1 ) - y =5
2x( y+1 ) - ( y+1 ) = 5-1
(2x+1)(y+1) = 4
Vì x,y là số nguyên nên:
2x+1 là số nguyên lẻ
y+1 là số nguyên.
Tá có:
4= 1.4 = 4.1 =2.2 = (-1)(-4) = (-4)(-1) = (-2)(-2)
TH1:
2x+1=1
y+1=4
=> x=0 ; y=3 (Thoả mãn)
Tương tự với các TH khác...

Câu c:
C = \(9^{2n+1}\) + 1
CM C ⋮ 10
Giải:
9 ≡ -1 (mod 10)
\(9^{2n+1}\) ≡ -1\(^{2n+1}\) (mod 10)
9\(^{2n+1}\) ≡ -1 (mod 10)
1 ≡ 1 (mod 10)
Cộng vế với vế ta có:
9\(^{2n+1}\) + 1 ≡ (-1) + 1 (mod 10)
9\(^{2n+1}\) + 1 ≡ 0 (mod 10)
C = 9\(^{2n+1}\) + 1 ⋮ 10 (đpcm)
\(n^2+n=n\left(n+1\right)\) là tích của hai số tự nhiên liên tiếp
=>\(n^2+n\) chỉ có thể có tận cùng là 0;2;6
=>\(n^2+n+1\) sẽ có tận cùng là 1;3;7
mà \(1995^{2000}\) có chữ số tận cùng là 5
nên \(n^2+n+1\) sẽ không chia hết cho \(1995^{2000}\)

bài 14:
\(a.\left(x-1\right)\cdot100=0\)
\(x-1=0\Rightarrow x=1\)
\(b.200-11x=24\)
\(11x=200-24\)
\(11x=176\)
\(x=\frac{176}{11}=16\)
\(c.165:\left(2x+1\right)=15\) (đkxđ: x khác \(-\frac12)\)
\(2x+1=\frac{165}{15}=11\)
\(2x=11-1=10\)
\(x=\frac{10}{2}=5\)
\(d.375:\left(45-4x\right)=15\) (đkxđ: \(x\ne\frac{45}{4})\)
\(45-4x=\frac{375}{15}=25\)
\(4x=45-25=20\)
\(x=20:4=5\)
bài 15:
giá tiền 125 chiếc điện thoại là:
125 x 2350000=293750000 (đồng)
giá tiền 250 chiếc máy tính bảng là:
250 x 4950000 = 1237500000 (đồng)
tổng số tiền mà cửa hàng phải trả cho số điện thoại và máy tính trên là:
293750000 + 1237500000 = 1531250000 (đồng)
đáp số: 1531250000 đồng

Bài 5:
a: \(37\cdot146+46\cdot2-46\cdot37\)
\(=37\left(146-46\right)+46\cdot2\)
\(=37\cdot100+92=3700+92=3792\)
b: \(2\cdot5\cdot71+5\cdot18\cdot2+10\cdot11\)
\(=10\cdot71+10\cdot18+10\cdot11\)
\(=10\left(71+18+11\right)=10\cdot100=1000\)
c: \(135+360+65+40\)
=135+65+360+40
=200+400
=600
d: \(27\cdot75+25\cdot27-450\)
\(=27\left(75+25\right)-450\)
=2700-450
=2250
Bài 4:
a: \(32\cdot163+32\cdot837\)
\(=32\cdot\left(163+837\right)\)
\(=32\cdot1000=32000\)
b: \(2\cdot3\cdot4\cdot5\cdot25=2\cdot5\cdot4\cdot25\cdot3=3\cdot10\cdot100=3000\)
c: \(25\cdot27\cdot4=27\cdot100=2700\)
Bài 3:
a: \(128\cdot19+128\cdot41+128\cdot40\)
\(=128\cdot\left(19+41+40\right)=128\cdot100=12800\)
b: \(375+693+625+307\)
=375+625+693+307
=1000+1000
=2000
c: \(37+42-37+22\)
=37-37+42+22
=0+64
=64
d: \(21\cdot32+21\cdot68\)
\(=21\cdot\left(32+68\right)=21\cdot100=2100\)
Bài 2:
a: \(17\cdot85+15\cdot17-120\)
\(=17\left(85+15\right)-120\)
=1700-120
=1580
b: \(189+73+211+127\)
=189+211+73+127
=400+200
=600
c: \(38\cdot73+27\cdot38\)
\(=38\left(73+27\right)=38\cdot100=3800\)
Bài 1:
a: \(28\cdot76+23\cdot28-28\cdot13\)
\(=28\left(76+23-13\right)=28\cdot86=2408\)
b: \(39\cdot50+25\cdot39+75\cdot61\)
\(=39\left(50+25\right)+75\cdot61\)
\(=39\cdot75+75\cdot61=75\left(39+61\right)=75\cdot100=7500\)
c: \(32\cdot163+837\cdot32\)
\(=32\left(163+837\right)=32\cdot1000=32000\)
d: \(63+118+37+82\)
=63+37+118+82
=100+200
=300

6A: Số dư lớn nhất có thể nên số dư là 8-1=7
Số bị chia là: \(19\cdot8+7=159\)
6B: Số dư nhỏ nhất có thể nên số dư là 0
Số bị chia là \(23\cdot15=345\)
7A: Gọi số chia là x(Điều kiện: x<>0)
Số bị chia là 10x+8
Tổng của số bị chia; thương; số dư là 116 nên ta có:
10x+8+10+8=116
=>10x+26=116
=>10x=90
=>x=9(nhận)
Vậy: Số chia là 9
7B: GỌi số chia là x(Điều kiện: x<>0)
Số bị chia là 6x+4
Tổng của số bị chia, thương và số dư là 62 nên ta có:
6x+4+6+4=62
=>6x+8+6=62
=>6x+14=62
=>6x=48
=>x=8(nhận)
Vậy: Số chia là 8
Giải:
Số tờ tiền trị giá 1000 đồng là : 1000*2=2000 (đồng)= 2 tờ
Số tờ tiền trị giá 10000 đồng là : 10000*9=90000 (đồng)= 9 tờ
Số tờ tiền trị giá 100000 đồng là : 100000*4=400000 (đồng)=4 tờ
Bác Hoa phải trả số tờ tiền là : 2+9+4=15 ( tờ )
Vậy bác Hoa phải trả 15 tờ tiền