Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(A=2+2^2+2^3+\cdots+2^{100}\)
=>\(2A=2^2+2^3+2^4+\cdots+2^{101}\)
=>\(2A-A=2^2+2^3+2^4+\cdots+2^{101}-2-2^2-2^3-\cdots-2^{100}\)
=>\(A=2^{101}-2\)
2: \(B=1+5+5^2+5^3+\cdots+5^{150}\)
=>\(5B=5+5^2+5^3+\cdots+5^{151}\)
=>\(5B-B=5+5^2+5^3+\cdots+5^{151}-1-5-5^2-\cdots-5^{150}\)
=>\(4B=5^{151}-1\)
=>\(B=\frac{5^{151}-1}{4}\)
3: \(C=3+3^2+\cdots+3^{1000}\)
=>\(3C=3^2+3^3+\cdots+3^{1001}\)
=>\(3C-C=3^2+3^3+\cdots+3^{1001}-3-3^2-\cdots-3^{1000}\)
=>\(2C=3^{1001}-3\)
=>\(C=\frac{3^{1001}-3}{2}\)
Câu 1:
A = 2 + 2\(^2\) + 2\(^3\) + ... + 2\(^{100}\)
2A = 2\(^2\) + 2\(^3\) + ... + 2\(^{100}\) + 2\(^{101}\)
2A - A = (2\(^2\) + 2\(^3\) + ... + 2\(^{100}\)+ 2\(^{101}\)) -(2 + 2\(^2\) + 2\(^3\) + ... + 2\(^{100}\))
A = 2\(^2\) + 2\(^3\) + ... + 2\(^{100}\)+ 2\(^{101}\) - 2 - 2\(^2\) -2\(^3\) - ... - 2\(^{100}\)
A = (2\(^2\) - 2\(^2\)) + (2\(^3\) - 2\(^3\)) + ... + (2\(^{100}\) - 2\(^{100}\)) + (2\(^{101}\) - 2)
A = 0 + 0 + 0 + ... + 0 + 2\(^{101}\) - 2
A = 2\(^{101}\) - 2
2x = 43 : 25
2x = (22)3 : 25
2x = 26 : 25
2x = 2
=> x = 1
Giải:
A = 3\(^0\) + 3\(^1\) + 3\(^2\) + ... + 3\(\)\(^{2021}\)
Xét dãy số: 0; 1; 2;...; 2021
Dãy số trên là dãy số cách đều với khoảng cách là: 1 - 0 = 1
Số số hạng của dãy số trên là: (2021 - 0) : 1 + 1 = 2022
A có 2022 hạng tử. Vì 2022 : 3 = 674
Vậy nhóm ba hạng tử liên tiếp của A vào nhau ta được:
A = (3\(^0\) + 3\(^1\) + 3\(^2\)) + (3\(^3\) + 3\(^4\) + 3\(^5\)) +...+ (3\(^{2019}\) + 3\(^{2020}\)+ 3\(^{2021}\))
A = (1+ 3 + 9)+ 3\(^3\).(1 + 3 + 9) + ... + 3\(^{2019}\) .(\(1+3+9\))
A = (1 + 3 +9).(1 + 3\(^3\) + ... + 3\(^{2019}\))
A = (4 + 9).(1 + 3\(^3\) + ... + 3\(^{2019}\))
A = 13.(1 + 3\(^3\) + ... + 3\(^{2019}\)) ⋮ 13
Vậy chứng minh A chia hết cho 13 là điều không thể.
Bài 1:
6) 3x + 2³ = 17 + 3²
3x + 8 = 17 + 9
3x + 8 = 26
3x = 26 - 8
3x = 18
x = 18 : 3
x = 6
Vậy x = 6
Bài 2:
3) 145 - (125 + x) = 12
125 + x = 145 - 12
125 + x = 133
x = 133 - 125
x = 8
Vậy x = 8
6) 3³ - (x - 5) = 2²
27 - (x - 5) = 4
x - 5 = 27 - 4
x - 5 = 23
x = 23 + 5
x = 28
Vậy x = 28
9) (x + 7) - 15⁰ = 202 - 19
(x + 7) - 1 = 189
x + 7 = 189 + 1
x + 7 = 190
x = 190 - 7
x - 183
Vậy x = 183
1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
a)
\(5^6:5^4+3.3^2+8^0\)
\(=5^2+3^3+1\)
\(=25+27+1\)
\(=53\)
b)
\(3^{21}:\left(3^{15}.20+3^{15}.7\right)\)
\(=3^{21}:\left\lbrack3^{15}.\left(20+7\right)\right\rbrack\)
\(=3^{21}:\left(3^{15}.27\right)\)
\(=3^{21}:\left(3^{15}.3^3\right)\)
\(=3^{21}:3^{18}\)
\(=3^3\)
\(=27\)
c)
\(4^2.3^2-15.3+2000^0\)
\(=12^2-45+1\)
\(=144+1-45\)
\(=145-45\)
\(=100\)
d)
\(3.5^2+2.4^3-1^{2025}\)
\(=3.25+2.64-1\)
\(=75+128-1\)
\(=203-1\)
\(=202\)
*Chúc bạn học tốt nhé!*
tôi viết thiếu
bài 1: tính