K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7

a) \(\frac{x+1}{x}=1+\frac{1}{x}\left(x\in Q;x>0\right)\)

Nếu \(\frac{x+1}{x}\in Z\)\(\frac{1}{x}\in Z\)

\(\)\(x\inƯ\left(1\right)\)\(x\in\left\lbrace-1;1\right\rbrace\)

\(x\) là số hữu tỉ dương\(\)

\(x=1\)

Vậy \(x=1\)

b) \(x+\frac{1}{x^2}\in Z\)

Giả sử \(x=\frac{a}{b}\left(\frac{a}{b}\right.\) là một phân số tối giản, \(ƯCLN\left(a;b\right)=1)\)

\(x+\frac{1}{x^2}=\frac{a}{b}+\frac{1}{\frac{a^2}{b^2}}=\frac{a}{b}+\frac{b^2}{a^2}=\frac{a^3+b^3}{b.a^2}\left(1\right)\)

Do \(x+\frac{1}{x^2}\in Z\)\(\frac{a^3+b^3}{b.a^2}\in Z\)

\(\left(a^3+b^3\right)\)\(\left(b.a^2\right)\)

\(\left(a^3+b^3\right)\)\(a^2\)

\(a^3\)\(a^2\)\(b^3\)\(a^2\)

Ta có \(a\)\(b\)\(2\) số nguyên tố cùng nhau.

Nếu \(a>1\)\(a\) sẽ có ít nhất 1 ước nguyên tố.

Gọi ước nguyên tố đó là: \(k\)

\(b^3\)\(a^2\)\(b^3\)\(k\)\(b\)\(k\) (do \(k\) là số nguyên tố)

\(a\)\(b\)\(2\) số nguyên tố cùng nhau nên không tồn tại ước chung nguyên tố là \(k\)

\(\)\(Ư\left(a\right)=\left\lbrace-1;1\right\rbrace\)

\(a\in\left\lbrace-1;1\right\rbrace\)

Khi \(a=1\)

\(\left(1\right)\)\(\frac{1+b^3}{b}\)

\(\frac{1+b^3}{b}\in Z\)\(\left(1+b^3\right)\)\(b\)

\(b^3\)\(b\)\(1\)\(b\)

\(b\inƯ\left(1\right)\)\(b\in\left\lbrace-1;1\right\rbrace\)

Do ta giả sử \(x=\frac{a}{b}\)\(x\in Q;x>0\) (do \(x\) là số hữu tỉ dương theo đề bài)

\(a;b\) cùng dấu

\(\left(a;b\right)\in\left\lbrace\left(-1;-1\right);\left(1;1\right)\right\rbrace\)

\(x=1\)

Vậy \(x=1\) \(\)

2 tháng 8 2016

a) \(\frac{2}{x-1}< 0\)=> x-1<=>x<1

b) \(\frac{x-7}{x-11}>0\)

<=> \(\begin{cases}x-7>0\\x-11>0\end{cases}\)hoặc\(\begin{cases}x-7< 0\\x-11< 0\end{cases}\)<=>x>11 hoặc x<7

d) \(\frac{x+10}{x-7}< 0\)

<=> \(\begin{cases}x+10< 0\\x-7>0\end{cases}\)hoặc \(\begin{cases}x+10>0\\x-7< 0\end{cases}\)

=> 7<x<10

2 tháng 8 2016

a) Để \(\frac{2}{x-1}< 0\)

\(\Leftrightarrow x-1< 0\)

\(\Leftrightarrow x< 1\)

b) Để \(\frac{x-7}{x-11}>0\)

\(\Leftrightarrow\begin{cases}x-7>0\\x-11>0\end{cases}\) hoặc \(\begin{cases}x-7< 0\\x-11< 0\end{cases}\)

\(\Leftrightarrow\begin{cases}x>7\\x>11\end{cases}\) hoặc \(\begin{cases}x< 7\\x< 11\end{cases}\)

\(\Leftrightarrow x>11\)  hoặc \(x< 7\)

d) Để \(\frac{x+10}{x-7}< 0\)

\(\Leftrightarrow\begin{cases}x+10>0\\x-7< 0\end{cases}\) hoặc \(\begin{cases}x+10< 0\\x-7>0\end{cases}\)

\(\Leftrightarrow\begin{cases}x>-10\\x< 7\end{cases}\) hoặc \(\begin{cases}x< -10\\x>7\end{cases}\) (vô nghiệm)

\(\Leftrightarrow-10< x< 7\)

\(a,\frac{x-7}{x-11}=\frac{\left(x-11\right)+4}{x-11}=1+\frac{4}{x-11}\)

Để phân số trên là số hữu tỉ âm\(\Rightarrow\frac{4}{x-11}< 0\)

\(\Rightarrow x-11< 0\)

\(\Rightarrow x< 11\)

\(2,\frac{x+2}{x-6}=\frac{x-6+8}{x-6}=1+\frac{8}{x-6}\)

Để phân số trên là số hữu tỉ âm \(\frac{\Rightarrow8}{x-6}< 1\Rightarrow x-6>8\Rightarrow x>14\)

\(3,\frac{x-3}{x+7}=\frac{x+7-10}{x+7}=1-\frac{10}{x+7}\)

Để phân số trên là số hữu tỉ âm\(\Rightarrow\frac{10}{x+7}< 1\Rightarrow x+7>10\Rightarrow x>3\)

8 tháng 8 2015

cái này mình chưa học tới nên không biết

8 tháng 8 2015

a) Ta có: \(\frac{x-7}{x-11}=\frac{\left(x-11\right)+4}{x-11}=1+\frac{4}{x-11}\)

Để phân số trên là số hữu tỉ âm.

=>\(\frac{4}{x-11}<1\)

=>4<x-11

=>x-11>4

=>x-11+11>4+11

=>x>45

Vậy để phân số trên là số hữu tỉ âm thì x>45

Các câu sau bạn làm tương tự nha.

2 tháng 7 2019

Mình nghĩ như thế này thôi nhé   

x+2/x-6 = x-6+8/x-6 = 1  +   8/x-6 

để x+2/x-6 là số hữu tỉ dương => x-6  thuộc Ư(8)={ -1 ; 1 ; 2 ; -2 ; 4 ; -4 ; 8 ; -8 } 

nếu x -6 = 1 => x = 7 ( TM ) 

Nếu x - 6 = -1 => x= 8 ( tm ) 

Nếu x - 6 = 2 => x = 8 ( tm ) 

Nếu x -6 = -2 =>  x = 4 ( tm ) 

Nếu x - 6 = 4 => x = 10 ( tm )

Nếu x -6 = -4 => x = 2 ( tm) 

Nếu x -6 = 8 => x = 14 ( tm )

Nếu x -6=-8 => x = -2 ( ktm )

Vậy x € { 7 ; 5 ; £ ; 4 ; 2 ; 10 ; 14   } thì x+2 / x-6  là số hữu tỉ dương 

b/ câu này bạn cũng làm tương tự như vậy nhưng x phải là số âm thì mới thỏa mãn . 

2 tháng 7 2019

a)\(\frac{x+2}{x-6}\)là số hữu tỉ dương\(\Leftrightarrow x+2\)và \(x-6\)cùng dấu.

Mà x + 2 > x - 6 nên \(\hept{\begin{cases}x+2< 0\\x-6>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -2\\x>6\end{cases}}\)

Vậy x < - 2 và x > 6 thì \(\frac{x+2}{x-6}\)là số hữu tỉ dương

 Để \(x=\frac{a-20}{-3}\) ( a ∈ N* ) nhận giá trị dương

=> a - 20 nhận giá trị âm

=> a nhỏ hơn 20

a) S = { a ∈ N* | a < 20 }

    \(S=\left\{...;17;18;19\right\}\)

b) ( Không hiểu đề , thông cảm , bạn làm nốt nhé ! )

15 tháng 8 2021

uuuuuuuuuuuuuuuuuuuuuuuuuuuuu

23 tháng 4 2018

Ta có: \(\frac{5x+1}{x+1}=\frac{5x+5-4}{x+1}\)

\(=\frac{5\left(x+1\right)-4}{x+1}\)

\(=\frac{5\left(x+1\right)}{x+1}-\frac{4}{x+1}\)

\(=5-\frac{4}{x+1}\)

Vì 5 là số nguyên

=> Để 5x+1/x+1 là số nguyên thì 4/x+1 phải là số nguyên

=> 4 chia hết cho x + 1

=> x + 1 thuộc Ư(4)

=> x + 1 thuộc { 1;-1;2;-2;4;-4 }

=> x thuộc { 2;0;3;-1;5;-3 }

23 tháng 4 2018

Gọi số đó là A

\(\frac{5x+1}{x+1}=\frac{4x+x+1}{x+1}\)=\(\frac{4x+4-4+x+1}{x+1}=\frac{\left(x+1\right)+\left(x+1\right)+\left(x+1\right)+\left(x+1\right)-4+\left(x+1\right)}{x+1}\)

Vậy để A là sô nguyên thì 4 phải chia hết x+1 và x+1 thuộc ước của 4

Ư(4)={+4;+1;+2)

x+1=+1;+2;+4

Vay x=0;2;3;-1;6;-2.

 TUi ko biết số hửu tỉ nên chỉ cần ghép thêm vài sô thuộc ước của 4 và la sô hửu tỉ là được