
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


58. \(\left|x-\frac15\right|+\frac13=\frac14-\left|-\frac32\right|\)
\(\left|x-\frac15\right|+\frac13=\frac14-\frac32\)
\(\left|x-\frac15\right|=\frac14-\frac32-\frac13\)
\(\left|x-\frac15\right|=-\frac{19}{12}\)
⇒ vô nghiệm
59. \(\left|x-\frac52\right|=\frac43-\left(\frac23-\frac12\right)\)
\(\left|x-\frac52\right|=\frac76\)
\(\left[\begin{array}{l}x-\frac52=\frac76\Rightarrow x=\frac{11}{3}\\ x-\frac52=-\frac76\Rightarrow x=\frac43\end{array}\right.\)
vậy \(x\in\left\lbrace\frac43;\frac{11}{3}\right\rbrace\)
Để tìm x, ta giải từng phương trình:
Đối với phương trình 58:
|x - 1/5| + 1/3 = 1/4 - |-3/2|, ta biến đổi thành |x - 1/5| = 1/4 - 3/2 - 1/3 = -11/12.
Vì giá trị tuyệt đối luôn lớn hơn hoặc bằng 0, phương trình này không có nghiệm x.
Đối với phương trình 59:
|x - 5/2| = 4/3 - (2/3 - 1/2), ta biến đổi thành |x - 5/2| = 4/3 - (4/6 - 3/6) = 4/3 - 1/6 = 8/6 - 1/6 = 7/6. Suy ra x - 5/2 = 7/6 hoặc x - 5/2 = -7/6, cho ta các nghiệm x = 23/6 và x = 8/6 = 4/3.
Giải chi tiết:
Phương trình 58: |x - 1/5| + 1/3 = 1/4 - |-3/2| Tính giá trị tuyệt đối: |-3/2| = 3/2. Thay vào phương trình: |x - 1/5| + 1/3 = 1/4 - 3/2.
Chuyển 1/3 sang vế phải: |x - 1/5| = 1/4 - 3/2 - 1/3.
Quy đồng mẫu số để trừ: 1/4 - 6/4 - 4/12 = 3/12 - 18/12 - 4/12 = -19/12. Tuy nhiên, kiểm tra lại phép tính: 1/4 - 3/2 - 1/3 = 3/12 - 18/12 - 4/12 = (3 - 18 - 4)/12 = -19/12.
Nếu kết quả là -19/12 thì |x - 1/5| = -19/12. Vì giá trị tuyệt đối của một số luôn không âm, phương trình này không có nghiệm x.
Phương trình 59: |x - 5/2| = 4/3 - (2/3 - 1/2)
Tính biểu thức trong ngoặc: 2/3 - 1/2 = 4/6 - 3/6 = 1/6.
Thay vào phương trình: |x - 5/2| = 4/3 - 1/6.
Quy đồng mẫu số để trừ: |x - 5/2| = 8/6 - 1/6 = 7/6.
Trường hợp 1: x - 5/2 = 7/6.
x = 7/6 + 5/2.
x = 7/6 + 15/6.
x = 22/6 = 11/3.
Trường hợp 2: x - 5/2 = -7/6.
x = -7/6 + 5/2.
x = -7/6 + 15/6.
x = 8/6 = 4/3.
Kết luận:
Phương trình 58 không có nghiệm.
Phương trình 59 có hai nghiệm là x = 11/3 và x = 4/3.

b) \(\left|5x-3\right|-x=7\)
\(\Rightarrow\left|5x-3\right|=7+x\)
\(\Rightarrow\orbr{\begin{cases}5x-3=7+x\\5x-3=-\left(7+x\right)\end{cases}\Rightarrow\orbr{\begin{cases}5x-3=7+x\\5x-3=-7-x\end{cases}\Rightarrow}\orbr{\begin{cases}5x-x=7+3\\5x+x=-7+3\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}4x=10\\6x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{2}{3}\end{cases}}}\)
Vậy ....................
Bạn ơi !!! ý A tham khảo tại link này nè :
https://h.vn/hoi-dap/question/394208.html
~ Học tốt ~

1) \(\left|x\right|< 4\Leftrightarrow-4< x< 4\)
2) \(\left|x+21\right|>7\Leftrightarrow\orbr{\begin{cases}x+21>7\\x+21< -7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>-14\\x< -28\end{cases}}\)
3) \(\left|x-1\right|< 3\Leftrightarrow-3< x-1< 3\Leftrightarrow-2< x< 4\)
4) \(\left|x+1\right|>2\Leftrightarrow\orbr{\begin{cases}x+1>2\\x+1< -2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}}\)
\(\left|x+\frac{1}{2}\right|+\left|3-y\right|=0\)
Vì \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\\\left|3-y\right|\ge0\end{cases}}\Rightarrow\)\(\left|x+\frac{1}{2}\right|+\left|3-y\right|\ge0\)
Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|3-y\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=3\end{cases}}\)

1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu
\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)

a: \(\left|x+\frac{19}{55}\right|\ge0\forall x\)
\(\left|y+\frac{1890}{1975}\right|\ge0\forall y\)
\(\left|z-2004\right|\ge0\forall z\)
Do đó: \(\left|x+\frac{19}{55}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|\ge0\forall x,y,z\)
Dấu '=' xảy ra khi \(\begin{cases}x+\frac{19}{55}=0\\ y+\frac{1890}{1975}=0\\ z-2004=0\end{cases}\Rightarrow\begin{cases}x=-\frac{19}{55}\\ y=-\frac{1890}{1975}=-\frac{378}{395}\\ z=2004\end{cases}\)
b: Sửa đề: \(\left|x+\frac92\right|+\left|y+\frac43\right|+\left|z+\frac72\right|\le0\)
Ta có: \(\left|x+\frac92\right|\ge0\forall x\)
\(\left|y+\frac43\right|>=0\forall y\)
\(\left|z+\frac72\right|\ge0\forall z\)
Do đó: \(\left|x+\frac92\right|+\left|y+\frac43\right|+\left|z+\frac72\right|\ge0\forall x,y,z\)
mà \(\left|x+\frac92\right|+\left|y+\frac43\right|+\left|z+\frac72\right|\le0\)
nên \(\begin{cases}x+\frac92=0\\ y+\frac43=0\\ z+\frac72=0\end{cases}\Rightarrow\begin{cases}x=-\frac92\\ y=-\frac43\\ z=-\frac72\end{cases}\)
c: \(\left|x+\frac34\right|\ge0\forall x\)
\(\left|y-\frac15\right|\ge0\forall y\)
\(\left|x+y+z\right|\ge0\forall x,y,z\)
Do đó: \(\left|x+\frac34\right|+\left|y-\frac15\right|+\left|x+y+z\right|\ge0\forall x,y,z\)
Dấu '=' xảy ra khi \(\begin{cases}x+\frac34=0\\ y-\frac15=0\\ x+y+z=0\end{cases}\Rightarrow\begin{cases}x=-\frac34\\ y=\frac15\\ z=-x-y=\frac34-\frac15=\frac{11}{20}\end{cases}\)
d: \(\left|x+\frac34\right|\ge0\forall x\)
\(\left|y-\frac25\right|\ge0\forall y\)
\(\left|z+\frac12\right|\ge0\forall z\)
Do đó: \(\left|x+\frac34\right|+\left|y-\frac25\right|+\left|z+\frac12\right|\ge0\forall x,y,z\)
Dấu '=' xảy ra khi \(\begin{cases}x+\frac34=0\\ y-\frac25=0\\ z+\frac12=0\end{cases}\Rightarrow\begin{cases}x=-\frac34\\ y=\frac25\\ z=-\frac12\end{cases}\)

a) \(|x+4|=\frac{7}{3}\) \(\Rightarrow x+4=\pm\left(\frac{7}{3}\right)\)
TH1: \(x+4=\frac{7}{3}\)
\(x=\frac{7}{3}-4=-\frac{5}{3}\)
TH2: \(x+4=-\frac{7}{3}\)
\(x=-\frac{7}{3}-4=-\frac{19}{3}\)
\(x+\frac54=x-\frac35\)
(Trừ cả 2 vế cho x)
\(\frac54=-\frac35\) (vô lý)
Ta có: \(x+\frac54=x-\frac35\)
=>\(x-x=-\frac35-\frac54\)
=>\(0x=-\frac{12}{20}-\frac{25}{20}=-\frac{37}{20}\) (vô lý)
=>x∈∅