Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1a\(\left(-\frac{3}{4}\right)^4\cdot\left(-\frac{4}{3}\right)^2+\frac{7}{16}\)
\(=\left(-\frac{3}{4}\right)^2+\frac{7}{16}\)
\(=\frac{9}{16}+\frac{7}{16}\)
=1

Mình làm câu c thôi ( câu a,b mấy trang khác có nha). Hình mn tự vẽ nha.
Theo b, có: Tam giác DCE là tam giác đều
=> DCE=CDE=DEC=60
Xét tam giác CND:
Áp dụng định lí:" Tổng ba góc một tam giác bằng 180"
=>CND+CDN+DCN=180
=>CND+60+10=180 (vì ICD=10; CDE= 60)
=>CND=180-70=110 (1)
Xét tam giác CNE:
Áp dụng định lí:"Tổng ba góc một tam giác bằng 180"
=>CNE+CEN+NCE=180
=>CNE+60+(ACB+ECF)=180
=>CNE+60+30+20=180
=>CNE+110=180
=>CNE=70 (2)
Từ (1) và (2) suy ra: CND+CNE=70+110=180
=>DNE=180 =>DNE là góc bẹt
=>D; N; E thẳng hàng (ĐPCM)

Gọi H là trung điểm của BC. Trên tia đối của tia AM lấy K sao cho AM=MK
Xét \(\Delta AMN\)và \(\Delta KMB\)có\(\hept{\begin{cases}AM=MK\\\widehat{AMN}=\widehat{KMB}\\MB=MN\end{cases}}\)
\(\Rightarrow\Delta AMN=\Delta KMB\left(c.g.c\right)\)
\(\Rightarrow\widehat{MAN}=\widehat{MKB}\)
\(\Rightarrow AN=BK=AM\)
mà \(AB>AM\Rightarrow AB>BK\)
\(\Rightarrow\widehat{BKA}>\widehat{BAK}\)
\(\Rightarrow\widehat{MAN}>\widehat{BAM}\)
A B C M N D
Trên tia đồi của tia MA lấy điểm D sao cho: MA=MD
Ta có tam giác ABC cân tại A nên:\(\widehat{ACB}=\widehat{ABC}\text{ mà:}\widehat{ANM}>\widehat{ACN}\left(\text{góc ngoài}\right)\Rightarrow\widehat{ANM}>\widehat{ABN}\Rightarrow AN< AB\)
mặt khác:
\(\Delta AMN=\Delta DMB\left(c.g.c\right)\Rightarrow AN=BD< AB\Rightarrow\widehat{BAM}>\widehat{BDM};\widehat{MAN}=\widehat{BDM}< \widehat{BAM}\)
hello mọi ng mình là đặng nhật minh
sao