Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

c/ 2x - 1 = \(5^{98}:5^{96}\)
2x - 1 = \(5^2\) = 25
2x = 25 + 1 = 26
x = 26 : 2
x = 13
d/ 7x + 3 = \(3^5.2^3.9\)
7x + 3 = \(3^5.3^2.8=3^7.8=2187.8\)
7x + 3 = \(17496\)
7x = 17496 - 3 = 17493
x = 17493 : 7
x = 2499
e/\(2^{2x+6}=1\)
\(2^{2x+6}=2^0\)
2x + 6 = 0
2x = 0 - 6 = - 6
x = - 6 : 2
x = - 3
j/ \(2^x=8\)
\(2^x=2^3\)
x = 3
g/ \(2^x:2^3=16\)
\(2^{x-3}=2^4\)
x - 3 = 4
x = 4 + 3
x = 7
h/ \(2^x+2^{x+1}+2^{x+2}=56\)
\(2^x\left(1+2+2^2\right)\) = 56
\(2^x.7=56\)
\(2^x=56:7\)
\(2^x=8\)
\(2^x=2^3\)
x = 3
Bài a, b thiên phong giải r, mk chỉ làm những bài còn lại thôi. Chúc bạn học tốt!!!

\(1,S=3+3^2+3^3+...+3^{20}\)(1)
\(\Rightarrow3S=3^2+3^3+3^4+...+3^{21}\)(2)
Lấy (2) -(1) ta có :
\(\Rightarrow2S=3^{21}-3\)
\(\Rightarrow S=\frac{3^{21}-3}{2}\)
\(3,A=1.2.3+2.3.4+3.4.5+...+\left(n-1\right)n\left(n+1\right)\)
\(\Rightarrow4A=1.2.3.4+2.3.4.\left(5-1\right)+3.4.5.\left(6-2\right)+...+\left(n-1\right)n\left(n+1\right)\left[\left(n+2\right)-\left(n-2\right)\right]\)
\(\Rightarrow4A=1.2.3.4+2.3.4.5-1.2.3.4+...+\left(n-1\right)n\left(n+1\right)\left(n+2\right)-\left(n-2\right)\left(n-1\right)n\left(n+1\right)\)
\(\Rightarrow4A=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow A=\frac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)

Bài 1:
a) Ta có: \(\frac{-5}{7}+\frac{2}{7}+\frac{4}{-9}+\frac{4}{9}\)
\(=-\frac{3}{7}+\frac{-4}{9}+\frac{4}{9}\)
\(=-\frac{3}{7}\)
b) Ta có: \(\left(\frac{1}{2}:\frac{3}{4}\right)^2\)
\(=\left(\frac{1}{2}\cdot\frac{4}{3}\right)^2\)
\(=\left(\frac{2}{3}\right)^2=\frac{4}{9}\)
c) Ta có: \(\frac{1}{2}+\frac{3}{4}-\left(\frac{4}{5}+\frac{3}{4}\right)\)
\(=\frac{1}{2}+\frac{3}{4}-\frac{4}{5}-\frac{3}{4}\)
\(=\frac{1}{2}-\frac{4}{5}\)
\(=\frac{5}{10}-\frac{8}{10}=\frac{-3}{10}\)
d) Ta có: \(5^6:5^4+2^3\cdot2^2-225:15^2\)
\(=5^2+2^5-\frac{15^2}{15^2}\)
\(=25+32-1\)
\(=56\)
e) Ta có: \(\frac{7}{23}+\frac{4}{17}-\frac{7}{23}+\frac{13}{17}\)
\(=\frac{4}{17}+\frac{13}{17}\)
\(=\frac{17}{17}=1\)
g) Ta có: \(19\frac{1}{4}\cdot\frac{7}{12}-15\frac{1}{4}\cdot\frac{7}{12}\)
\(=\frac{7}{12}\left(19+\frac{1}{4}-15-\frac{1}{4}\right)\)
\(=\frac{7}{12}\cdot4=\frac{7}{3}\)

b: =>3|x-5|=8+4=12
=>|x-5|=4
=>x-5=4 hoặc x-5=-4
=>x=9 hoặc x=1
d: =>2x+6=3-3x-2
=>2x+6=1-3x
=>5x=-5
hay x=-1
e: \(\Leftrightarrow x-3\inƯC\left(70;98\right)\)
\(\Leftrightarrow x-3\in\left\{1;2;7;14\right\}\)
mà x>8
nên \(x\in\left\{10;17\right\}\)

Bài 1 tự làm!
Bài 2:
a, \(\left(3x-4\right)\left(x-1\right)^3=0\Rightarrow\left[{}\begin{matrix}3x-4=0\\\left(x-1\right)^3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=1\end{matrix}\right.\)
b, \(2^{2x-1}:4=8^3\Rightarrow2^{2x-1}:2^2=2^9\)
\(\Rightarrow2x-1-2=9\Rightarrow2x-3=9\Rightarrow2x-12\Rightarrow x=6\)
c, Đề chưa rõ
d, \(\left(x+2\right)^5=2^{10}\Rightarrow\left(x+2\right)^5=4^5\Rightarrow x+2=4\Rightarrow x=2\)
e, \(\left(3x-2^4\right).7^3=2.7^4\Rightarrow3x-2^4=2.7^4:7^3\Rightarrow3x-16=2.7=14\)
\(\Rightarrow3x=14+16=30\Rightarrow x=\dfrac{30}{3}=10\)
f, \(\left(x+1\right)^2=\left(x+1\right)^0\Rightarrow\left(x+1\right)^2=1\) (vì x0 = 1)
\(\Rightarrow x+1=1\Rightarrow x=0\)

a/ 390 - \(2^6\) = 390 - 64 = 326
b/ 786 : ( \(3^2.2^3-7.10\) ) = 786 : ( 9 . 8 - 70 ) = 786 : (72 - 70) = 786 : 2 = 393
c/ 426 - ( \(5^2.3^2+4^3.3^5\)) = 426 - ( 25 - 9 + 64 . 243 ) = 426 - ( 25 - 9 + 15552 ) = 426 - 15568 = - 15142
d/ \(4^3-3^3=64-27=37\)
e/ \(5^2-4^2=25-16=9\)
Chúc bạn học tốt!!!

a: =18x941+18x59
=18(941+59)
=18x1000=18000
b: \(=81:27-16:8=3-2=1\)
c: =30-40+25=-10+25=15
d: =17(85+15)-150=1700-150=1550
e: =-150-180-200=-530
f: =17+15+40=72
\(B=\frac{7}{1\cdot9}+\frac{7}{9\cdot17}+\cdots+\frac{7}{2011\cdot2019}\)
\(=\frac78\cdot\left(\frac11-\frac19+\frac19-\frac{1}{17}+.\ldots+\frac{1}{2011}-\frac{1}{2019}\right)\)
\(=\frac78\cdot\left(\frac11-\frac{1}{2019}\right)=\frac78\cdot\frac{2018}{2019}=\frac{7063}{8076}\)
\(C=\frac{3^2}{1\cdot4}+\frac{3^2}{4\cdot7}+\cdots+\frac{3^2}{2017\cdot2020}\)
\(=3\cdot\left(\frac11-\frac14+\frac14-\frac17+\ldots+\frac{1}{2017}-\frac{1}{2020}\right)\)
\(=3\cdot\left(\frac11-\frac{1}{2020}\right)=3\cdot\frac{2019}{2020}=\frac{6057}{2020}\)
\(D=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\cdots+\frac{1}{18\cdot19\cdot20}\)
\(=\frac12\cdot\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\cdots+\frac{1}{18\cdot19}-\frac{1}{19\cdot20}\right)\)
\(=\frac12\cdot\left(\frac{1}{1\cdot2}-\frac{1}{19\cdot20}\right)=\frac12\cdot\left(\frac12-\frac{1}{380}\right)\)
\(=\frac12\cdot\frac{189}{380}=\frac{189}{760}\)
A = \(\frac{2}{1.7}\) + \(\frac{2}{7.13}\) + \(\frac{2}{13.19}\) + ...+ \(\frac{2}{2013.2019}\)
A = \(\frac26\).(\(\frac{6}{1.7}\) + \(\frac{6}{7.13}\) + \(\frac{6}{13.19}\) +...+ \(\frac{6}{2013.2019}\)
A = \(\frac26\).(\(\frac11\) - \(\frac17\) + \(\frac17\) - \(\frac{1}{13}\) + ...+ \(\frac{1}{2013}-\frac{1}{2019}\))
A = \(\frac13\).(\(\frac11-\frac{1}{2019}\))
A = \(\frac13\).\(\frac{2018}{2019}\)
A = \(\frac{2018}{3057}\)