
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Có: \(\frac{y-2}{3}=\frac{2y-4}{6}\)
\(\frac{z-3}{4}=\frac{3z-9}{12}\)
Suy ra\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{\left(x-1\right)-\left(2y-4\right)+\left(3z-9\right)}{2-6+12}\)
\(=\frac{\left(x-2y+3z\right)-6}{8}=\frac{14-6}{8}=1\)
Vậy có \(\frac{x-1}{2};\frac{y-2}{3};\frac{z-3}{4}=1\)Thay vào có x=3; y=5; z=7

C/ Số số hạng của dãy trên là:
(x - 1) + 1 = x (số hạng)
Tổng dãy trên là: x.(x + 1) / 2 = 55
=> x.(x + 1) = 55 x 2
=> x .(x + 1) = 110
=> x .(x + 1) = 10.11
=> x = 10
c) (x+1).x:2=55
(x+1).x=110
Tích của 2 số liên tiếp bằng 110
=>x=10

a) A min \(_{\Leftrightarrow}\) \(\dfrac{1}{x-3}\) đạt GTNN \(\Leftrightarrow\) x-3 lớn nhất mà x \(\in Z\) nên x bất kì sao cho càng lớn là đc (vô lý) xem lại đề

Để \(x+\frac{1}{x}\) xác định thì x≠0
Do x hữu tỉ và \(x+\frac{1}{x}\in Z\) , đặt \(x=\frac{a}{b}\) với a;b là các số nguyên khác 0, \(\left(a,b\right)=1\) và đặt \(x+\frac{1}{x}=n\in Z\)
Khi đó: \(\frac{a}{b}+\frac{b}{a}=n\Rightarrow a\left(\frac{a}{b}+\frac{b}{a}\right)=a.n\)
\(\Rightarrow\frac{a^2}{b}+b=a.n\Rightarrow\frac{a^2}{b}=a.n-b\)
Do a,b,n nguyên nên \(a.n-b\in Z\Rightarrow\frac{a^2}{b}\in Z\)
Mà \(\left(a,b\right)=1\Rightarrow b=\pm1\)
Chứng minh tương tự ta có \(\frac{b^2}{a}\in Z\) và (a,b)=1 nên suy ra \(a=\pm1\)
=>\(x=\frac{a}{b}=\pm1\)
Vậy \(x=\pm1\) là số hữu tỉ thỏa mãn yêu cầu
Để tìm số hữu tỉ \(x\) sao cho biểu thức sau nhận giá trị nguyên:
\(x + \frac{1}{x}\)
ta cần phân tích và giải bài toán này một cách chi tiết.
Bước 1: Giả sử \(x + \frac{1}{x} = n\), với \(n\) là một số nguyên.
Ta sẽ cố gắng tìm điều kiện để biểu thức này là một số nguyên.
- Từ \(x + \frac{1}{x} = n\), ta nhân cả hai vế với \(x\) để loại bỏ mẫu số:
\(x^{2} + 1 = n \cdot x\)
hay là:
\(x^{2} - n \cdot x + 1 = 0\)
Bước 2: Giải phương trình bậc 2
Phương trình \(x^{2} - n \cdot x + 1 = 0\) là một phương trình bậc 2 đối với \(x\). Ta có thể giải phương trình này bằng công thức nghiệm phương trình bậc 2:
\(x = \frac{- \left(\right. - n \left.\right) \pm \sqrt{\left(\right. - n \left.\right)^{2} - 4 \cdot 1 \cdot 1}}{2 \cdot 1}\)\(x = \frac{n \pm \sqrt{n^{2} - 4}}{2}\)
Bước 3: Điều kiện để \(x\) là số hữu tỉ
Để \(x\) là một số hữu tỉ, căn bậc hai \(\sqrt{n^{2} - 4}\) phải là một số nguyên, tức là:
\(n^{2} - 4 \&\text{nbsp};\text{ph}ả\text{i}\&\text{nbsp};\text{l} \overset{ˋ}{\text{a}} \&\text{nbsp};\text{m}ộ\text{t}\&\text{nbsp};\text{s} \overset{ˊ}{\hat{\text{o}}} \&\text{nbsp};\text{ch} \overset{ˊ}{\imath} \text{nh}\&\text{nbsp};\text{ph}ưo\text{ng} .\)
Gọi \(n^{2} - 4 = k^{2}\) với \(k\) là một số nguyên. Ta có:
\(n^{2} - k^{2} = 4\)\(\left(\right. n - k \left.\right) \left(\right. n + k \left.\right) = 4\)
Bước 4: Giải phương trình \(\left(\right. n - k \left.\right) \left(\right. n + k \left.\right) = 4\)
Giải phương trình \(\left(\right. n - k \left.\right) \left(\right. n + k \left.\right) = 4\), ta có các cặp nghiệm của \(\left(\right. n - k , n + k \left.\right)\) là các cặp số nhân với nhau ra 4:
- \(\left(\right. 1 , 4 \left.\right)\)
- \(\left(\right. - 1 , - 4 \left.\right)\)
- \(\left(\right. 2 , 2 \left.\right)\)
- \(\left(\right. - 2 , - 2 \left.\right)\)
Từ đây, ta tìm được các giá trị của \(n\) và \(k\).
Trường hợp 1: \(n - k = 1\) và \(n + k = 4\)
\(n - k = 1 \text{v} \overset{ˋ}{\text{a}} n + k = 4\)
Cộng hai phương trình:
\(2 n = 5 \Rightarrow n = \frac{5}{2}\)
Vậy \(n = \frac{5}{2}\) không phải là một số nguyên, do đó loại.
Trường hợp 2: \(n - k = - 1\) và \(n + k = - 4\)
\(n - k = - 1 \text{v} \overset{ˋ}{\text{a}} n + k = - 4\)
Cộng hai phương trình:
\(2 n = - 5 \Rightarrow n = \frac{- 5}{2}\)
Vậy \(n = \frac{- 5}{2}\) cũng không phải là một số nguyên, do đó loại.
Trường hợp 3: \(n - k = 2\) và \(n + k = 2\)
\(n - k = 2 \text{v} \overset{ˋ}{\text{a}} n + k = 2\)
Cộng hai phương trình:
\(2 n = 4 \Rightarrow n = 2\)
Vậy \(n = 2\).
Trường hợp 4: \(n - k = - 2\) và \(n + k = - 2\)
\(n - k = - 2 \text{v} \overset{ˋ}{\text{a}} n + k = - 2\)
Cộng hai phương trình:
\(2 n = - 4 \Rightarrow n = - 2\)
Vậy \(n = - 2\).
Bước 5: Tính giá trị của \(x\)
Với \(n = 2\) và \(n = - 2\), ta thay vào công thức giải phương trình bậc 2 \(x = \frac{n \pm \sqrt{n^{2} - 4}}{2}\).
Trường hợp \(n = 2\):
\(x = \frac{2 \pm \sqrt{2^{2} - 4}}{2} = \frac{2 \pm \sqrt{4 - 4}}{2} = \frac{2 \pm 0}{2} = 1\)
Trường hợp \(n = - 2\):
\(x = \frac{- 2 \pm \sqrt{\left(\right. - 2 \left.\right)^{2} - 4}}{2} = \frac{- 2 \pm \sqrt{4 - 4}}{2} = \frac{- 2 \pm 0}{2} = - 1\)
Kết luận:
Vậy, giá trị của \(x\) là 1 hoặc -1.

\(x-2\sqrt{x}=0\)
\(\Rightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
\(x=\sqrt{x}\)
\(\Rightarrow x-\sqrt{x}=0\)
\(\Rightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

\(\frac{x-2015}{2}+\frac{x-2016}{3}=\frac{x-2017}{4}+\frac{x-2018}{5}\)
\(=\frac{x-2015}{2}+1+\frac{x-2016}{3}+1=\frac{x-2017}{4}+1+\frac{x-2018}{5}+1\)
\(\frac{x-2013}{2}+\frac{x-2013}{3}=\frac{x-2013}{4}+\frac{x-2013}{5}\)
\(\frac{x-2013}{2}+\frac{x-2013}{3}-\frac{x-2013}{4}-\frac{x-2013}{5}=0\)
\(\left(x-2013\right)\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}-\frac{1}{5}\right)=0\)
vì \(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}-\frac{1}{5}\ne0\)nên \(x-2013=0\)
x = 2013

Làm mẫu câu a nhé:
Ta có: \(2x=3y\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x^2}{9}=\frac{y^2}{4}\)
Áp dụng t/c dãy tỉ số = nhau ta có:
\(\frac{x}{3}=\frac{y}{2}=\frac{x^2}{9}=\frac{y^2}{4}=\frac{x^2-y^2}{9-4}=5\)
\(\Rightarrow x=3.5=15\)
\(y=5.2=10\)
Ý 1:
\(2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\)
Áp dụng t/c DTSBN ta có : \(\frac{x}{3}=\frac{y}{2}=\frac{x^2-y^2}{3^2-2^2}=\frac{25}{5}=5\)
=> x,y=...
\(\frac{x}{3}=\frac{y}{4}\)
Áp dụng t/c DTSBN ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{3x-2y}{3.3-2.4}=\frac{5}{1}=5\)
=>x,y=...
\(3x=2y=5z\Leftrightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{3}\)
Áp dụng t/c DTSBN ta có : \(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=\frac{y-2x}{5-2.2}=\frac{5}{1}=5\)
=>x,y,z=....
\(64:4^4=256\)
\(\Rightarrow4^3:4^{x}=4^4\)
\(4^{x}=4^3:4^4\)
\(4^{x}=4^{-1}\)
⇒ x = -1
Vậy x = -1
\(daidaochungsinh\)
\(64-4^{x}=256\)
\(=>4^3:4^{x}=4^4\)
\(=>4^{x}=4^3:4^4\)
\(=>4^{x}=4^{-1}\)
\(=>x=-1\)
\(Vậy\) \(x=-1\)