K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

S
10 tháng 7

\(a.\left(2-\sqrt{10}\right)\times\left(\sqrt2-\sqrt5\right)\)

\(=\sqrt2\cdot\left(\sqrt2-\sqrt5\right)\times\left(\sqrt2-\sqrt5\right)\)

\(=\sqrt2\cdot\left(\sqrt2-\sqrt5\right)^2=\sqrt2\cdot\left(2-2\sqrt{10}+5\right)\)

\(=\sqrt2\cdot\left(7-2\sqrt{10}\right)=7\sqrt2-2\sqrt{20}\)

\(=7\sqrt2-4\sqrt5\)

\(b.\sqrt3\times\left(\sqrt{72}+\sqrt{4,5}-\sqrt{12,5}\right)\)

\(=\sqrt3\times\left(6\sqrt2+\frac{3\sqrt2}{2}-\frac{5\sqrt2}{2}\right)\)

\(=6\sqrt6+\frac32\sqrt6-\frac52\sqrt6\)

\(=\sqrt6\times\left(6+\frac32-\frac52\right)\)

\(=\sqrt6\times5=5\sqrt6\)

\(c.12\times\left(\sqrt{\frac23}-\sqrt{\frac32}\right)=12\times\left(\frac{\sqrt2}{\sqrt3}-\frac{\sqrt3}{\sqrt2}\right)\)

\(=12\times\left(\frac{\sqrt6}{3}-\frac{\sqrt6}{2}\right)=12\sqrt6\times\left(\frac13-\frac12\right)\)

\(=12\sqrt6\times\left(-\frac16\right)=-2\sqrt6\)

23 tháng 4 2017

a, \(3\sqrt{5}\)

b, \(\dfrac{9\sqrt{2}}{2}\)

c, \(15\sqrt{2}-\sqrt{5}\)

d, \(\dfrac{17\sqrt{2}}{5}\)

ĐỀ KIỂM TRA 1 TIẾT TỔNG HỢP​1. Tính \(\sqrt{6+2\sqrt{8\sqrt{2}-9}}-\sqrt{7-\sqrt{2}}\)  (căn 7 - căn căn 2 ) (1đ)2. Rút gọn: \(\frac{2\sqrt{2}+2\sqrt{3}+4}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{12}+5}\)(1đ)3. Rút gọn \(\sqrt{\frac{27\left(m^2-6m+9\right)}{48}}\)với m < 3 (1đ)4. Tìm GTNN của biểu thức và x tương ứng: \(M=\sqrt{16x^2-8x+2}\)(0,5đ)5. Cho biểu thức:...
Đọc tiếp

ĐỀ KIỂM TRA 1 TIẾT TỔNG HỢP

1. Tính \(\sqrt{6+2\sqrt{8\sqrt{2}-9}}-\sqrt{7-\sqrt{2}}\)  (căn 7 - căn căn 2 ) (1đ)

2. Rút gọn: \(\frac{2\sqrt{2}+2\sqrt{3}+4}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{12}+5}\)(1đ)

3. Rút gọn \(\sqrt{\frac{27\left(m^2-6m+9\right)}{48}}\)với m < 3 (1đ)
4. Tìm GTNN của biểu thức và x tương ứng: \(M=\sqrt{16x^2-8x+2}\)(0,5đ)

5. Cho biểu thức: (2,5đ)
\(A=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)với x >0, x khác 1 
Hãy tìm x để A có nghĩa rồi:
a/ Rút gọn A
b/ Tìm x biết A =-1 
6. Giai phương trình \(\sqrt{16x-32}-\sqrt{4x-8}+\sqrt{9x-18}=1\)(0,5đ)
7. Giai phương trình \(\sqrt{x^2+2x+6}=x+2\)(0,5đ)
8. Thực hiện phép tính: \(B=\sqrt{5}\left(1-\sqrt{5}\right)+\sqrt{\sqrt{5}+1}.\sqrt{\sqrt{5}-1}\)(0,5đ)
9. Rút gọn biểu thức E = \(\sqrt{\frac{b}{a}}+ab\sqrt{\frac{1}{ab}}-\frac{b}{a}.\sqrt{\frac{a}{b}}\)(0,5đ)
10. Giai phương trình sau: \(\sqrt{4x-12}-\sqrt{25x-75}-\sqrt{x-3}=4-\sqrt{16x-48}\)(0,5đ)
11. Cho biểu thức: \(F=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}-1}{\sqrt{a}+2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)với a >0, a khác 1
a/ Rút gọn F
b/ Tìm giá trị của a để trị F = -F
 

0
15 tháng 7 2016

b) \(\frac{2-\sqrt{2}}{\sqrt{2}}=\frac{\left(2-\sqrt{2}\right)\sqrt{2}}{\sqrt{2}\cdot\sqrt{2}}=\frac{2\sqrt{2}-2}{2}=\frac{2\left(\sqrt{2}-1\right)}{2}=\sqrt{2}-1\)

10 tháng 1 2020

a) \(\sqrt{\frac{1}{2}}+\sqrt{4,5}+\sqrt{12,5}=\sqrt{\frac{1}{2}}+\sqrt{\frac{9}{2}}+\sqrt{\frac{25}{2}}=\sqrt{\frac{1}{2}}+3\sqrt{\frac{1}{2}}+5\sqrt{\frac{1}{2}}=9\sqrt{\frac{1}{2}}\)

b) \(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}=\sqrt{4.5}-\sqrt{9.5}+3\sqrt{9.2}+\sqrt{36.2}=2\sqrt{5}-3\sqrt{5}+9\sqrt{2}+6\sqrt{2}=-\sqrt{5}+15\sqrt{2}\)

10 tháng 1 2020

a) \(\sqrt{\frac{1}{2}}+\sqrt{4,5}+\sqrt{12,5}=\frac{\sqrt{2}}{2}+\frac{3\sqrt{2}}{2}+\frac{5\sqrt{2}}{2}=\frac{9\sqrt{2}}{2}\)

b) \(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}=2\sqrt{5}-3\sqrt{5}+9\sqrt{2}+6\sqrt{2}=-\sqrt{5}+15\sqrt{2}=15\sqrt{2}-\sqrt{5}\)

26 tháng 7 2018

Giup mình phần 3,4,5 của bài 2 với bài 4 nữa . Helpppp me !!

17 tháng 7 2016

a. \(\left(\sqrt{5-2\sqrt{6}}+\sqrt{2}\right).\sqrt{3}=\left(\left|\sqrt{3}-\sqrt{2}\right|+\sqrt{2}\right).\sqrt{3}=\left(\sqrt{3}\right)^2=3\)

17 tháng 7 2016

b.\(\frac{2-\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}\left(2-\sqrt{2}\right)}{2}=\frac{2\sqrt{2}-2}{2}=\frac{2\left(\sqrt{2}-1\right)}{2}=\sqrt{2}-1\)

Bài 1:

a) Để căn thức \(\sqrt{\frac{2}{9-x}}\) có nghĩa thì \(\left\{{}\begin{matrix}\frac{2}{9-x}\ge0\\9-x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9-x>0\\x\ne9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 9\\x\ne9\end{matrix}\right.\Leftrightarrow x< 9\)

b) Ta có: \(x^2+2x+1\)

\(=\left(x+1\right)^2\)

\(\left(x+1\right)^2\ge0\forall x\)

nên \(x^2+2x+1\ge0\forall x\)

Do đó: Căn thức \(\sqrt{x^2+2x+1}\) xác được với mọi x

c) Để căn thức \(\sqrt{x^2-4x}\) có nghĩa thì \(x^2-4x\ge0\)

\(\Leftrightarrow x\left(x-4\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x-4\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x-4< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x\ge4\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x< 4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x< 0\end{matrix}\right.\)

Bài 3:

a) Ta có: \(\sqrt{\left(3-\sqrt{10}\right)^2}\)

\(=\left|3-\sqrt{10}\right|\)

\(=\sqrt{10}-3\)(Vì \(3< \sqrt{10}\))

b) Ta có: \(\sqrt{9-4\sqrt{5}}\)

\(=\sqrt{5-2\cdot\sqrt{5}\cdot2+4}\)

\(=\sqrt{\left(\sqrt{5}-2\right)^2}\)

\(=\left|\sqrt{5}-2\right|\)

\(=\sqrt{5}-2\)(Vì \(\sqrt{5}>2\))

c) Ta có: \(3x-\sqrt{x^2-2x+1}\)

\(=3x-\sqrt{\left(x-1\right)^2}\)

\(=3x-\left|x-1\right|\)

\(=\left[{}\begin{matrix}3x-\left(x-1\right)\left(x\ge1\right)\\3x-\left(1-x\right)\left(x< 1\right)\end{matrix}\right.\)

\(=\left[{}\begin{matrix}3x-x+1\\3x-1+x\end{matrix}\right.=\left[{}\begin{matrix}2x+1\\4x-1\end{matrix}\right.\)