Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:
Đặt \(\left(\frac{3}{2}\right)^x=a\) \((a>0)\)
PT tương đương với:
\(\left(\frac{9}{4}\right)^x-2.\left(\frac{3}{2}\right)^x+m^2=0\)
\(\Leftrightarrow a^2-2a+m^2=0\) (1)
-Trước tiên, để pt đầu tiên có hai nghiệm phân biệt thì (1) cũng phải có hai nghiệm phân biệt \(\rightarrow \) \(\Delta'=1-m^2>0\Leftrightarrow -1< m< 1\)
Áp dụng hệ thức Viete với \(a_1,a_2\) là nghiệm của (1) \(\left\{\begin{matrix} a_1+a_2=2\\ a_1a_2=m^2\end{matrix}\right.\)
-Vì \(a\) luôn dương nên \(\left\{\begin{matrix} a_1+a_2>0\\ a_1a_2>0\end{matrix}\right.\Leftrightarrow m^2>0 \Leftrightarrow m\neq 0\)
-Xét đk cuối cùng, để pt đầu tiên có hai nghiệm trái dấu, tức \(x<0\) hoặc $x>0$ thì \(a<1\) hoặc \(a>1\), hay \((a_1-1)(a_2-1)< 0\)
\(\Leftrightarrow a_1a_2-(a_1+a_2)+1< 0\Leftrightarrow m^2<1\Leftrightarrow -1< m< 1\)
Vậy \(-1< m< 1; m\neq 0\)
Bài 2:
Đặt \(2^x=a\Rightarrow \) \(4^x-2m.2^x+2m=0\) tương đương với:
\(a^2-2ma+2m=0\) (1)
Để pt đầu tiên có hai nghiệm phân biệt thì (1) cũng phải có hai nghiệm phân biệt
\(\Rightarrow \Delta'=m^2-2m>0\Leftrightarrow m< 0\) hoặc $m>2$
Áp dugnj hệ thức viete với $a_1,a_2$ là hai nghiệm của phương trình:
\(a_1a_2=2m\Leftrightarrow 2^{x_1}.2^{x_2}=2m\Leftrightarrow 2^{x_1+x_2}=2m\Leftrightarrow 8=2m\rightarrow m=4\)
(thỏa mãn)
Vậy \(m=4\)

Lần sau em đăng bài ở học 24 để mọi người giúp đỡ em nhé!
Link đây: Cộng đồng học tập online | Học trực tuyến
1. Gọi I là tâm của mặt cầu cần tìm
Vì I thuộc d
=> I( a; -1; -a)
Mặt cầu tiếp xúc với hai mặt phẳng (p), (Q). nên ta co:
d(I; (P))=d(I;(Q))
<=> \(\frac{\left|a+2\left(-1\right)+2\left(-a\right)+3\right|}{\sqrt{1^2+2^2+2^2}}=\frac{\left|a+2\left(-1\right)+2\left(-a\right)+7\right|}{\sqrt{1^2+2^2+2^2}}\)
\(\Leftrightarrow\frac{\left|-a+1\right|}{3}=\frac{\left|-a+5\right|}{3}\Leftrightarrow a=3\)
=> I(3; -1; -3) ; bán kinh : R=d(I; P)=2/3
=> Phương trình mặt cầu:
\(\left(x-3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)
đáp án C.
2. Gọi I là tâm mặt cầu: I(1; -1; 0)
Ta có: Phương trình mặt phẳng (P) tiếp xúc vs mặt Cầu S tại M
=> IM vuông góc vs mặt phẳng (P)
=> \(\overrightarrow{n_p}=\overrightarrow{MI}=\left(1;0;0\right)\)
=> Phương trình mặt phẳng (P) có véc tơ pháp tuyến: \(\overrightarrow{n_p}\)và qua điểm M
1(x-0)+0(y+1)+0(z-0) =0<=> x=0
đáp án B
3.
\(f\left(x\right)=\dfrac{1}{256}\left(2x+3\right)^{10}=\dfrac{1}{256} \sum \limits_{k=0} ^{10}C_{k}^{10}(2x)^k.3^{10-k}\)
Để có hệ số x^8 thì k=8 khi đó hệ số của x^8 là:
\(\dfrac{1}{256}C_{8}^{10}.2^8.3^{10-8}=405\)
đáp án D
4.
pt <=> \(\left(2.5\right)^{x^2-3}=10^{-2}.10^{3x-3}\)
\(\Leftrightarrow10^{x^2-3}=10^{3x-5}\)
\(\Leftrightarrow x^2-3=3x-5\Leftrightarrow x^2-3x+5=0\)
=> theo định lí viet tổng các nghiệm bằng 3, tích các nghiệm bằng 5
Đáp án A

Ta có: \(f\left(x\right)=y=\frac{x^2+mx}{1-x}\Rightarrow y'=\frac{\left(2x+mx\right)\left(1-x\right)+\left(x^2+mx\right)}{\left(1-x\right)^2}=\frac{-x^2+2x+m}{\left(1-x\right)^2}\)\(\)\(\left(D=R/\left\{1\right\}\right)\)
Đặt \(g\left(x\right)=-x^2+2x+m\)\(\Rightarrow\)f(x) cùng dấu với y' trên D
Xét pt g(x)=0
\(\Delta'=m+1\), Hàm số có 2 điểm cực trì<=> pt có 2 nghiệm phân biệt khác 1
\(\Leftrightarrow\hept{\begin{cases}\Delta'>0\\f\left(1\right)\ne0\end{cases}\Leftrightarrow m>-1}\)
Khi đó 2 điểm cực trì là A(x1,f(x1) ) và B(x2, f(x2) )
Lại có \(f'\left(x_1\right)=\frac{\left(2x_1+m\right)\left(1-x_1\right)+\left(x_1^2+mx_1\right)}{\left(1-x_1\right)^2}=0\Rightarrow x_1^2+mx_1=-\left(2x_1+m\right)\left(1-x_1\right)\)
\(\Rightarrow f\left(x_1\right)=\frac{x_1^2+mx_1}{1-x_1}=-2x_1-m.\)
=>\(f\left(x_2\right)=-2x_2-m\)
Khoảng cách giữa 2 điểm cực trị:
\(AB=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}=\sqrt{\left(x_1-x_2\right)^2+\left(2x_1-2x_2\right)^2}=|x_1-x_2|\sqrt{5}=10\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=20\)
A/d Vi-ét cho pt g(x)=0\(\Rightarrow4+4m=20\Leftrightarrow m=4\)
Vậy m=4

Tacó
\(\int\frac{1+xsin\left(x\right)}{cos^2\left(x\right)}dx\\ =\int\frac{1}{cos^2x}dx+\int xd\left(\frac{1}{cosx}\right)\\ =tanx+\frac{x}{cosx}-\int\frac{1}{cosx}dx\\ =tanx+\frac{x}{cosx}-\int\frac{1}{1-sin^2x}d\left(sinx\right)\\ =KQ\)
Chỗ cos hay tan với x tự cách nha. Mình đang ôn thi nên kiểu này quên nhanh lắm, sai thì thông cảm nhé
Lời giải:
\(P=\int \frac{1+x\sin x}{\cos ^2x}dx=\int \frac{1}{\cos ^2x}dx+\int \frac{x\sin x}{\cos ^2x}dx\)
Ta thấy:
\(\int \frac{1}{\cos ^2x}dx=\tan x+c\)
Dựa vào công thức $u,v$:
\( \int \frac{x\sin x}{\cos ^2x}dx\)\(=x\sin x\tan x-\int \tan x(\sin x+x\cos x)dx\)
\(=x\sin x\tan x-\int \tan x\sin xdx-\int x\tan x\cos xdx\)
\(=x\sin x\tan x-\int \frac{\sin ^2x}{\cos x}dx-\int x\sin xdx\)
Trong đó:
\(\int \frac{\sin ^2x}{\cos x}=\int \frac{\sin ^2xd(\sin x)}{\cos ^2x}=\int \frac{\sin ^2xd(\sin x)}{1-\sin ^2x}=\int \frac{t^2dt}{1-t^2}=\int (-1+\frac{1}{1-t^2})dt\)
\(=-\int dt+\int \frac{dt}{1-t^2}=-\int dt+\frac{1}{2}\int (\frac{1}{1-t}+\frac{1}{1+t})dt\)
\(=-t-\frac{1}{2}\ln |t-1|+\frac{1}{2}\ln |t+1|+c=-\sin x-\frac{1}{2}\ln |\sin x-1|+\frac{1}{2}\ln |\sin x+1|+c\)
Và:
\(\int x\sin xdx=x(-\cos x)+\int \cos xdx=-x\cos x+\sin x+c\)
Do đó:
\(\int \frac{x\sin x}{\cos ^2x}dx=x\sin x\tan x+\frac{1}{2}\ln |\frac{\sin x-1}{\sin x+1}|+x\cos x+c\)
\(\Rightarrow P=\tan x+x\sin x\tan x+\frac{1}{2}\ln |\frac{\sin x-1}{\sin x+1}|+x\cos x+c\)

Lời giải:
Ta có \(y=\frac{mx+4}{x+m}\Rightarrow y'=\frac{m^2-4}{(x+m)^2}\)
Để hàm luôn nghịch biến trong khoảng xác định thì
\(y'\leq 0\Leftrightarrow m^2-4\leq 0\Leftrightarrow -2\leq m\leq 2\) (1)
Mặt khác, ta phải có \(m+x\neq 0\forall x\in (-\infty; 1)\Leftrightarrow -m\neq x\)
\(\Leftrightarrow -m\neq (-\infty; 1)\Leftrightarrow -m\in [1;+\infty)\)
\(\Leftrightarrow m\in (-\infty;-1]\) (2)
Từ \((1);(2)\Rightarrow -2\leq m\leq -1\)
Đáp án B
Mình tưởng hàm bậc 1 trên bậc 1 ko xảy ra dấu bằng chứ ạ?
\(\begin{cases}x+y=3\\ 2x-3y=1\end{cases}\Rightarrow\begin{cases}2x+2y=6\\ 2x-3y=1\end{cases}\)
=>\(\begin{cases}2x+2y-2x+3y=6-1=5\\ x+y=3\end{cases}\Rightarrow\begin{cases}5y=5\\ x+y=3\end{cases}\Rightarrow\begin{cases}y=1\\ x=3-1=2\end{cases}\)
\(\begin{cases}x+y=32\left(1\right)\\ x-3y=1\left(2\right)\end{cases}\)
lấy (1) - (2) vế theo vế ta được:
4y = 31 ⇒ y = \(\frac{31}{4}\)
thay y = \(\frac{31}{4}\) vào (2) ta được:
\(x-3\cdot\frac{31}{4}=1\)
\(x-\frac{93}{4}=1\)
\(x=1+\frac{93}{4}=\frac44+\frac{93}{4}=\frac{97}{4}\)
kết luận: \(\left(x;y\right)=\left(\frac{97}{4};\frac{31}{4}\right)\)