
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(A=3x\left(10x^2-2x+1\right)-6x\left(5x^2-x-2\right)\)
\(=30x^3-6x^2+3x-30x^3+6x^2+12x\)
\(=15x\)
Thay \(x=15\) vào biểu thức A.
Ta có: \(15\cdot15=225\)
Vậy giá trị biểu thức A tại \(x=15\) là 225.
b) \(5x\left(x-4y\right)-4y\left(y-5x\right)\)
\(=5x^2-20xy-4y^2+20xy\)
\(=5x^2-4y^2\)
Thay \(x=-\dfrac{1}{5};y=-\dfrac{1}{2}\) vào biểu thức B.
Ta có: \(5\cdot\left(-\dfrac{1}{5}\right)^2-4\cdot\left(-\dfrac{1}{2}\right)^2=-\dfrac{4}{5}\)
Vậy giá trị biểu thức B tại \(x=-\dfrac{1}{5};y=-\dfrac{1}{2}\) là \(-\dfrac{4}{5}\)

5x2 + 4y2 - 4xy = 6x - 4y - 2
5x2 +4y2 - 4xy - 6x - 4y - 2 = 0
(x2 -4xy + 4y2) - 2x + 4y +4x2 - 4x + 2 = 0
(x - 2y)2 - 2(x - 2y).1 + 12 +(4x2 - 4x + 12) = 0
(x - 2y - 1)2 + (2x - 1)2 = 0
⇒\(\left\{{}\begin{matrix}x-2y-1=0\\2x-1=0\end{matrix}\right.\)
⇒\(\left\{{}\begin{matrix}x-2y-1=0\Rightarrow\frac{1}{2}-2y-1=0\Rightarrow\frac{-1}{2}-2y=0\Rightarrow y=\frac{-1}{4}\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{-1}{4}\end{matrix}\right.\)

\(A=5x\left(4x^2-2x+1\right)-2x\left(10x^2-5x-2\right)\)
\(=20x^3-10x^2+5x-20x^3+10x^2+4x\)
\(=9x\)
Thay x=15 \(\Rightarrow A=9.15=135\)
\(B=6xy\left(xy-y^2\right)-8x^2\left(x-y^2\right)+5y^2\left(x^2-xy\right)\)
\(=6x^2y^2-6xy^3-8x^3+8x^2y^2+5x^2y^2-5xy^3\)
\(=19x^2y^2-11xy^3-8x^3\)
Thay x=1/2 ; y=2 vào B \(\Rightarrow19.\left(\frac{1}{2}\right)^2.2^2-11\cdot\frac{1}{2}\cdot2^3-8\cdot\left(\frac{1}{2}\right)^3\)
\(=19-44-1\)
\(=-26\)

a: \(=-xy\cdot x^2-2xy\cdot xy+3\cdot xy\)
\(=-x^3y-2x^2y^2+3xy\)
b: \(=\left(5x-x+4y-4y\right)\left(y-5x\right)\)
\(=4x\left(y-5x\right)=-20x^2+4xy\)
c: \(=\left(4x^2-2y\right)\left(5x^3-4y^2\right)\)
\(=4x^2\cdot5x^3-4x^2\cdot4y^2-2y\cdot5x^3+2y\cdot4y^2\)
\(=20x^5-16x^2y^2-10x^3y+8y^3\)

a) \(\left(5x-4y\right)\left(5x+4y\right)=25x^2-16y^2\)
b) \(\left(x+\frac{2}{3}\right)\left(x^2-\frac{2}{3}x+\frac{4}{9}\right)=x^3+\frac{8}{27}\)

a/ \(4x^2+2y^2-4xy+4x-2y+5=0\)
\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+2\left(2x-y\right)+1+4=0\)
\(\Leftrightarrow\left(2x-y\right)^2+2\left(2x-y\right)+1+4=0\)
\(\Leftrightarrow\left(2x-y+1\right)^2+4=0\)
Với mọi x, y ta có :
\(\left(2x-y+1\right)^2\ge0\Leftrightarrow\left(2x-y+1\right)^2+4>0\)
\(\Leftrightarrow pt\) vô nghiệm

Ta có : M\(^2\)= (\(\dfrac{5x-4y}{5x+4y}\))\(^2\) = \(\dfrac{\left(5x-4y\right)^2}{\left(5x+4y\right)^2}\)= \(\dfrac{25x^2+16y^2-40xy}{25x^2+16y^2+40xy}\)
= \(\dfrac{41xy-40xy}{41xy+40xy}=\dfrac{xy}{81xy}=\dfrac{1}{81}=\left(\dfrac{1}{9}\right)^2\)
Mà 4y < 5x < 0 \(\Rightarrow\)5x - 4y > 0 . 5x +4y < 0 \(\Rightarrow\) M < 0
Vậy M = - \(\dfrac{1}{9}\)

a) \(3x\left(x-4y\right)-\frac{12}{5}y\left(y-5x\right)=3x^2-12xy-\frac{12}{5}y^2+12xy=3x^2-\frac{12}{5}y^2\)
b) \(\left(4x^2-3y\right)\cdot2y-\left(3x^2-4y\right)\cdot3y\)
\(=8x^2y-6y^2-9x^2y+12y^2=-x^2y+6y^2\)
5x2-4y2
Ta có: 5x(x-4y)-4y(y-5x)
\(=5x^2-20xy-4y^2+20xy\)
\(=5x^2-4y^2\)