K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

P
Phong
CTVHS
28 tháng 6

`(d)y=2x+3b`

`(d')y=(2a+1)x+2b-3`

`a)` Để `(d)` và `(d')` là hai đường thẳng cắt nhau thì:

`2\ne2a+1`

`2a\ne2-1`

`2a\ne1`

`a\ne1/2`

`->a\ne1/2` thì `(d)` cắt `(d')`

`b)` Để `(d)` song song với `(d')` thì: `

`2=2a+1` và `3b\ne2b-3`

`2a=2-1` và `3b-2b\ne-3`

`2a=1` và `b\ne-3`

`a=1/2` và `b\ne-3`

`->a=1/2,b\ne-3` thì `(d)`//`(d')`

`c)` Để `(d)\bot(d')` thì: +

`2(2a+1)=-1`

`4a+2=-1`

`4a=-1-2`

`4a=-3`

`a=-3/4`

`->a=-3/4` thì `(d)\bot(d')`

`d)` Để `(d)` trùng với `(d')` thì:

`2=2a+1)` và `3b=2b-3`

`2a=2-1` và `3b-2b=-3`

`2a=1` và `b=-3`

`a=1/2` và `b=-3`

`->a=1/2,b=-3` thì `(d)` trùng `(d')`

Bài 4:

AB//CD

=>\(\hat{BAK}=\hat{AKD}\) (hai góc so le trong)

\(\hat{BAK}=\hat{DAK}\) (AK là phân giác của góc BAD)

nên \(\hat{DAK}=\hat{DKA}\)

=>DA=DK

Ta có: DK+KC=DC

DA+BC=DC

mà DK=DA

nên CK=CB

=>ΔCKB cân tại C

=>\(\hat{CKB}=\hat{CBK}\)

\(\hat{CKB}=\hat{ABK}\) (hai góc so le trong, AB//CD)

nên \(\hat{ABK}=\hat{CBK}\)

=>BK là phân giác của góc ABC

Bài 2:

a: Xét ΔDAB có

K,E lần lượt là trung điểm của DA,DB

=>KE là đường trung bình của ΔDAB

=>KE//AB và \(KE=\frac{AB}{2}\)

Xét ΔCAB có

F,G lần lượt là trung điểm của CA,CB

Do đó: FG là đường trung bình của ΔCAB

=>FG//AB và \(FG=\frac{AB}{2}\)

Xét hình thang ABCD có

K,G lần lượt là trung điểm của AD,BC

=>KG là đường trung bình của hình thang ABCD

=>KG//AB//CD và \(KG=\frac12\left(AB+CD\right)\)

Ta có: FG//AB

KG//AB

FG,KG có điểm chung là G

Do đó: F,G,K thẳng hàng(1)

ta có: KE//AB

KG//AB

KE,KG có điểm chung là K

Do đó: K,E,G thẳng hàng(2)

Từ (1),(2) suy ra K,E,F,G thẳng hàng

b: Ta có: KE+EF+FG=KG

=>\(EF+\frac12AB+\frac12AB=\frac12\left(CD+AB\right)\)

=>\(EF=\frac12\left(CD+AB-2AB\right)=\frac12\left(CD-AB\right)\)

17 giờ trước (21:33)

Giúp em với ạ. Em cần gấp ạ. Cảm ơn nhiều ạ.

17 giờ trước (21:39)

Bài 1:

a: \(A=x^2-4x+9\)

\(=x^2-4x+4+5\)

\(=\left(x-2\right)^2+5\ge5\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

b: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\frac12+\frac14+\frac34\)

\(=\left(x-\frac12\right)^2+\frac34\ge\frac34\forall x\)

Dấu '=' xảy ra khi \(x-\frac12=0\)

=>\(x=\frac12\)

Bài 2:

a: \(M=4x-x^2+3\)

\(=-\left(x^2-4x-3\right)\)

\(=-\left(x^2-4x+4-7\right)\)

\(=-\left(x-2\right)^2+7\le7\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

b: \(P=2x-2x^2-5\)

\(=-2\cdot\left(x^2-x+\frac52\right)\)

\(=-2\left(x^2-x+\frac14+\frac94\right)\)

\(=-2\left(x-\frac12\right)^2-\frac92\le-\frac92\forall x\)

Dấu '=' xảy ra khi \(x-\frac12=0\)

=>\(x=\frac12\)

Bài 3:

a: \(A=x^2-4x+24\)

\(=x^2-4x+4+20\)

\(=\left(x-2\right)^2+20\ge20\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

b: \(B=2x^2-8x+1\)

\(=2\left(x^2-4x+\frac12\right)\)

\(=2\left(x^2-4x+4-\frac72\right)\)

\(=2\left(x-2\right)^2-7\ge-7\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

c: \(C=3x^2+x-1\)

\(=3\left(x^2+\frac13x-\frac13\right)\)

\(=3\left(x^2+2\cdot x\cdot\frac16+\frac{1}{36}-\frac{13}{36}\right)\)

\(=3\left(x+\frac16\right)^2-\frac{13}{12}\ge-\frac{13}{12}\forall x\)

Dấu '=' xảy ra khi \(x+\frac16=0\)

=>\(x=-\frac16\)

Bài 4:

a: \(A=-5x^2-4x+1\)

\(=-5\left(x^2+\frac45x-\frac15\right)\)

\(=-5\left(x^2+2\cdot x\cdot\frac25+\frac{4}{25}-\frac{9}{25}\right)\)

\(=-5\left(x+\frac25\right)^2+\frac95\le\frac95\forall x\)

Dấu '=' xảy ra khi \(x+\frac25=0\)

=>\(x=-\frac25\)

b: \(B=-3x^2+x+1\)

\(=-3\left(x^2-\frac13x-\frac13\right)\)

\(=-3\left(x^2-2\cdot x\cdot\frac16+\frac{1}{36}-\frac{13}{36}\right)\)

\(=-3\left(x-\frac16\right)^2+\frac{13}{12}\le\frac{13}{12}\forall x\)

Dấu '=' xảy ra khi \(x-\frac16=0\)

=>\(x=\frac16\)

7 giờ trước (8:12)

Bài 1:

a; A = \(x^2\) - 4\(x\) + 9

A = \(x^2\) - 4\(x\) + 4 + 5

A = (\(x-2\))\(^2\) + 5

Vì (\(x-2\))\(^2\) ≥ 0 ∀ \(x\) ⇒ (\(x-2\))\(^2\) + 5 ≥ 5 dấu bằng xảy ra khi \(x-2=0\)\(x=2\)

Vậy Amin = 5 khi \(x\) = 2

b; B = \(x^2\) - \(x+1\)

B = (\(x^2\) - 2.\(x\).\(\frac12\) + \(\frac14)+\frac34\)

B = (\(x-\frac12\))\(^2\) + \(\frac34\)

Vì (\(x-\frac12\))\(^2\) ≥ 0 ∀ \(x\); ⇒ (\(x-\frac12\))\(^2\) + \(\frac34\)\(\frac34\)

Dấu = xảy ra khi \(x-\frac12\)= 0 ⇒ \(x\) = \(\frac12\)

Vậy Bmin = \(\frac34\) khi \(x=\frac12\)

7 giờ trước (8:25)

Bài 2:

a; M = \(4x-x^2+3\)

M = -(\(x^2-4x+4)+7\)

M = -(\(x^2\) - 2.\(x.2\) + 2\(^2\)) + 7

M = -(\(x-2\))\(^2\) + 7

Vì: (\(x-2)^2\) ≥ 0 ∀ \(x\)

-(\(x-2\))\(^2\) ≤ 0 ∀ \(x\)

-(\(x-2)^2\) + 7 ≤ 7 ∀ \(x\)

Dấu bằng xảy ra khi \(x-2=0\)\(x=2\)

Vậy Mmax = 7 khi \(x=2\)

b; P = \(2x-2x^2-5\)

P = -2(\(x^2\) - 2.\(x\).\(\frac12\) + \(\frac14\)) - \(\frac92\)

P = -2(\(x-\frac12\))\(^2\) - \(\frac92\)

Vì: (\(x-\frac12\))\(^2\) ≥ 0 ⇒ -2(\(x-\frac12\))\(^2\) ≤ 0

-2(\(x-\) \(\frac12\))\(^2\) - \(\frac92\) ≤ - \(\frac92\) dấu bằng xảy ra khi:

\(x-\frac12\) = 0 ⇒ \(x=\frac12\)

Vậy Pmax = - \(\frac92\) khi \(x=\frac12\)

1 giờ trước (13:48)

Bài 1:

a: \(\left(2a-b\right)\left(4a^2+2ab+b^2\right)\)

\(=8a^3+4a^2b+2ab^2-4a^2b-2ab^2-b^3\)

\(=8a^3-b^3\)

b: \(\left(3a+b\right)\left(9a^2-3ab+b^2\right)\)

\(=27a^3-9a^2b+3ab^2+9a^2b-3ab^2+b^3\)

\(=27a^3+b^3\)

c: \(\left(3a+2b\right)\left(3a-2b\right)-9a^2\)

\(=\left(3a\right)^2-\left(2b\right)^2-9a^2\)

\(=9a^2-4b^2-9a^2=-4b^2\)

d: \(\left(2x-3y\right)^2=\left(2x\right)^2-2\cdot2x\cdot3y+\left(3y\right)^2\)

\(=4x^2-12xy+9y^2\)

e: \(\left(3x-2y\right)^3=\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot2y+3\cdot3x\cdot\left(2y\right)^2-\left(2y\right)^3\)

\(=27x^3-54x^2y+36xy^2-8y^3\)

Bài 2:

a: \(\left(3x-5\right)\left(-5x+7\right)-\left(5x+2\right)\left(-3x+2\right)=4\)

=>\(-15x^2+21x+25x-35-\left(-15x^2+10x-6x+4\right)=4\)

=>\(-15x^2+46x-35+15x^2-4x-4=4\)

=>42x-39=4

=>42x=43

=>\(x=\frac{43}{42}\)

b: \(6x^2-\left(2x+5\right)\left(3x-2\right)=7\)

=>\(6x^2-6x^2+4x-15x+10=7\)

=>-11x=7-10=-3

=>\(x=\frac{3}{11}\)

Đề :cộng phân thức.giúp mình câu 10, 11, 12 nhé

S
11 tháng 8

10) đkxđ: \(x\ne\pm3\)

\(\frac{7}{a^2-9}+\frac{5}{a-3}+\frac{1}{a+3}=\frac{7}{\left(a-3\right)\left(a+3\right)}+\frac{5\cdot\left(a+3\right)}{\left(a+3\right)\left(a-3\right)}+\frac{a-3}{\left(a+3\right)\left(a-3\right)}\)

\(=\frac{7+5a+15+a-3}{\left(a+3\right)\left(a-3\right)}=\frac{6a+19}{\left(a+3\right)\left(a-3\right)}\)

11) đkxđ: \(x\ne-1\)

\(\frac{2x-1}{x^3+1}+\frac{2x}{x^2-x+1}-\frac{x}{x+1}+2\)

\(=\frac{2x-1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{2x\cdot\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{x\cdot\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{2\left(x+1\right)\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(\) \(=\frac{2x-1+2x^2+2x-x^3+x^2-x+2x^3+2}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\frac{x^3+3x^2+3x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\frac{\left(x+1\right)^3}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\frac{\left(x+1\right)^2}{x^2-x+1}\)

13) đkxđ: \(x\ne\pm\frac32\)

\(\frac{5}{2x-3}+\frac{2}{2x+3}-\frac{2x+5}{9-4x^2}\)

\(=\frac{5\cdot\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}+\frac{2\cdot\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}+\frac{2x+5}{\left(2x-3\right)\left(2x+3\right)}\)

\(=\frac{10x+15+4x-6+2x+5}{\left(2x-3\right)\left(2x+3\right)}\)

\(=\frac{16x+14}{\left(2x-3\right)\left(2x+3\right)}\)

17 giờ trước (21:40)

Bài 1:

a: \(A=x^2-4x+9\)

\(=x^2-4x+4+5\)

\(=\left(x-2\right)^2+5\ge5\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

b: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\frac12+\frac14+\frac34\)

\(=\left(x-\frac12\right)^2+\frac34\ge\frac34\forall x\)

Dấu '=' xảy ra khi \(x-\frac12=0\)

=>\(x=\frac12\)

Bài 2:

a: \(M=4x-x^2+3\)

\(=-\left(x^2-4x-3\right)\)

\(=-\left(x^2-4x+4-7\right)\)

\(=-\left(x-2\right)^2+7\le7\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

b: \(P=2x-2x^2-5\)

\(=-2\cdot\left(x^2-x+\frac52\right)\)

\(=-2\left(x^2-x+\frac14+\frac94\right)\)

\(=-2\left(x-\frac12\right)^2-\frac92\le-\frac92\forall x\)

Dấu '=' xảy ra khi \(x-\frac12=0\)

=>\(x=\frac12\)

Bài 3:

a: \(A=x^2-4x+24\)

\(=x^2-4x+4+20\)

\(=\left(x-2\right)^2+20\ge20\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

b: \(B=2x^2-8x+1\)

\(=2\left(x^2-4x+\frac12\right)\)

\(=2\left(x^2-4x+4-\frac72\right)\)

\(=2\left(x-2\right)^2-7\ge-7\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

c: \(C=3x^2+x-1\)

\(=3\left(x^2+\frac13x-\frac13\right)\)

\(=3\left(x^2+2\cdot x\cdot\frac16+\frac{1}{36}-\frac{13}{36}\right)\)

\(=3\left(x+\frac16\right)^2-\frac{13}{12}\ge-\frac{13}{12}\forall x\)

Dấu '=' xảy ra khi \(x+\frac16=0\)

=>\(x=-\frac16\)

Bài 4:

a: \(A=-5x^2-4x+1\)

\(=-5\left(x^2+\frac45x-\frac15\right)\)

\(=-5\left(x^2+2\cdot x\cdot\frac25+\frac{4}{25}-\frac{9}{25}\right)\)

\(=-5\left(x+\frac25\right)^2+\frac95\le\frac95\forall x\)

Dấu '=' xảy ra khi \(x+\frac25=0\)

=>\(x=-\frac25\)

b: \(B=-3x^2+x+1\)

\(=-3\left(x^2-\frac13x-\frac13\right)\)

\(=-3\left(x^2-2\cdot x\cdot\frac16+\frac{1}{36}-\frac{13}{36}\right)\)

\(=-3\left(x-\frac16\right)^2+\frac{13}{12}\le\frac{13}{12}\forall x\)

Dấu '=' xảy ra khi \(x-\frac16=0\)

=>\(x=\frac16\)